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Self-preferencing is the practice by hybrid platforms to treat their own products more favourably than

“comparable” third-party products. Regulations in the European Union and the United Kingdom restrict or ban

self-preferencing. This paper provides a definition of self-preferencing using the language of counterfactual

algorithmic fairness. The definition clarifies the interaction of different preferencing mechanisms, proxies, and

resolving variables, and highlights challenges of causal and structural estimation, and provides a preferencing

test generalizing the outcome-based test from the literature.

CCS Concepts: • Social and professional topics→ Antitrust and competition; • Applied computing→
Economics; E-commerce infrastructure.
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1 INTRODUCTION
Large platforms employ algorithmic curation to steer consumers toward products in online search,

e-commerce, and social media. The power of such steering has led to regulatory action in the

European Union. The Digital Markets Act prohibits “preferencing” of products sold by hybrid

platforms. In particular (Regulation (EU) 2022/1925 of the European Parliament and of the Council of
14 October 2022 on contestable and fair markets in the digital sector (Digital Markets Act) [2022, Art.
6(5)1]):

The gatekeeper shall not treat more favourably, in ranking and related indexing and

crawling, services and products offered by the gatekeeper itself than similar services

or products of a third party.

An example of a hybrid platform is Amazon, whichmatches consumers to third-party seller products

through many algorithmic curation tools. Figure 1 shows the first entries of a search result page

in response to a user query “usb c stick”. The first, search result, most likely to be clicked, is an

Amazon product, the latter two are third-party products.

This article provides a mathematical definition of what it means for a platform to self-preference
in ranking. We cast the problem in the language of (counterfactual) algorithmic fairness, with a

special focus on causal pathways from the sensitive attribute𝐴 (whether a product is the platform’s

own) to the ranking action 𝑅. Our definition clarifies the interaction of different preferencing

mechanisms, proxies, and resolving variables, and highlights challenges of causal estimation that

arise because ranking is chosen as a function of features and identity. While algorithmic fairness has

had successes in several application areas such as school admissions and criminal justice, it has had

limited impact on fairness provisions in (non-labor) platform markets.
1
Our main contribution is to

introduce tools from algorithmic fairness into platform settings and provide algorithmic fairness

with a new area of theoretical and applied research.

Self-preferencing in consumer AI agents. A second, emerging locus of preferencing is the consumer
AI agent such as OpenAI’s Agent—a conversational or autonomous assistant that plans, searches,

compares, and guides the human to direct checkout [OpenAI 2025]. Such agents may soon be

vertically integrated with marketplaces or monetized by affiliate fees and ads. Preferencing can then

arise at the plan level: the agent chooses which merchants to consider, which pages to open, what to

1
It is worth noting, that the long form of the Digital Markets Act is a “Regulation on Contestible and Fair Digital Markets”

(emphasis added).
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Fig. 1. Example of a ranking from the Amazon Marketplace. For prompt “usb c stick”, the first three offers
are shown. The first offer is sold by Amazon, and the most expensive of the three. Two other offers are sold by
third-party sellers. (Screenshot taken on amazon.com on July 3, 2025 from a U.S. IP address and an account
enrolled in the Amazon Prime subscription programme.)

summarize, and which items to add to cart. Our framework (which will be introduced in detail later)

applies verbatim: (i) the sensitive attribute 𝐴 indicates whether the candidate option (merchant,

offer, or plan step) is affiliated with the agent’s provider; (ii) the action 𝑅 is the proposed solution

to the user; (iii) the predicted match value Y′ is the agent’s causal prediction of user utility or

success conditional on actions; and (iv) non-preferencing requires that any dependence of the plan

on affiliation flows only through Y′. This means that our definition applies even in the emerging

markets facilitated by AI agents.

This paper at a glance. Section 2 reviews causal diagrams and fairness concepts. Section 3

gives a general definition of non-preferencing. Section 4 discusses realistic complications (proxies,

endogenous features and actions, multiple ranking surfaces) and how to address them. Section 5

develops a protocol that platforms and consumer AI providers can implement to demonstrate

non-preferencing. We conclude in Section 6.

1.1 Related Work in Industrial Organization
Industrial Organization (IO) approaches to platform ranking and self-preferencing study how

vertically integrated intermediaries allocate salience, and how it affects competition, entry, and

welfare. Policy interest has been catalyzed by the EU’s Platform-to-Business Regulation and the

Digital Markets Act, which frame ranking neutrality and “differential treatment” as central concerns

in hybrid platforms [Regulation (EU) 2019/1150 of the European Parliament and of the Council of 20
June 2019 on promoting fairness and transparency for business users of online intermediation services
and amending Regulation (EU) No 1215/2012 (Platform-to-Business Regulation) 2019; Regulation (EU)
2022/1925 of the European Parliament and of the Council of 14 October 2022 on contestable and fair
markets in the digital sector (Digital Markets Act) 2022]. Within IO, the empirical and theoretical

amazon.com
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literatures have converged on two complementary families of preferencing tests that map naturally

to our notation (𝐴,𝑋, 𝑅,𝑌 ).
The first family comprises conditioning-on-observables tests: regress realized outcomes or expo-

sure on a platform-identity indicator 𝐴 controlling for observed features 𝑋 , and interpret a positive

residual dependence as “favoritism.” These tests are straightforward to implement and transparent,

but they inherit the classic IO worries of omitted variables and proxying: if 𝑋 contains proxies for

𝐴, or if 𝑋 fails to span demand-relevant heterogeneity (which would point to relevant features of

products not captured in the features), the coefficient on 𝐴 is difficult to interpret.

The second family, advocated by several recent papers, is outcome-based: ask whether own

products receive more exposure than would maximize a counterfactually estimated outcome, holding
fixed merit or predicted match value [Aguiar et al. 2021; Jürgensmeier and Skiera 2023; Reimers

and Waldfogel 2023]. In streaming and e-commerce applications, these studies estimate potential

outcomes under alternative rankings (e.g., via randomized exposure or quasi-experimental vari-

ation), then compare the platform’s observed allocation to the outcome-maximizing allocation.

When such causal estimation is possible, we claim, outcome-based metrics operationalize the “right”

counterfactual: would the platform give itself the same position it gives comparable, in terms of

observables but also consumers’ revealed preference, third-party items? Our framework follows

this outcome-based logic but strengthens it by explicitly formalizing which dependence on 𝐴 is

permissible—namely, only through a resolving variable Y′ that predicts 𝑌 causally.

On the normative side, IO models analyze platforms’ ranking objectives and the welfare implica-

tions of vertical integration. Reimers and Waldfogel [2023] study surplus-maximizing ranking and

interpret deviations as evidence of preferencing, abstracting from strategic pricing. Hartzell and

Haupt [2025] allow producers to respond strategically and characterize when consumer-optimal

rankings can be implemented without disadvantaging third parties. Both strands clarify that some

dependence of 𝑅 on 𝐴 may be efficient if platform identity shifts true match value (e.g., due to

reliable fulfillment), but they also highlight that, absent causal identification of the 𝐴→ 𝑌 chan-

nel, efficiency and favoritism are observationally confounded. Our definition disentangles these

channels by requiring any 𝐴→ 𝑅 link to be mediated by Y′.
A separate empirical line measures preferencing with tests resembling the outcome-based test.

Lee and Musolff [2021] examine entry into Amazon product pages and quantify self-preferencing

with a demand model that maps observed placements into implied advantages for own products.

Lam [2021] estimate a structural search model with embedded ads and show that search frictions

and behavioral responses can offset gains from better matching, complicating the welfare account-

ing of ranking tweaks. Farronato et al. [2023] provide descriptive evidence of keyword-search

self-preferencing, documenting systematic visibility advantages Amazon Retail on the Amazon

Marketplace.

Identification challenges in this literature mirror classic IO demand problems: 𝑅 is chosen

as a function of (𝐴,𝑋 ), 𝑋 is endogenous to seller and platform decisions (pricing, fulfillment,

assortment), and outcomes 𝑌 reflect equilibrium behavior. Consequently, valid tests typically rely

on randomized exposure, policy shocks, or instruments—methodological themes that connect to

the use of instruments and experimental variation in demand estimation [Berry et al. 1995]. Our

framework embraces these constraints: the validity requirement for Y′, see Definition 3.1 is an

identification statement, and our proposed test in Section 5 makes explicit options for the platform

to establish causal estimation.
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1.2 Related Work in Algorithmic Fairness
Work on algorithmic fairness in ranking has crystallized around two complementary views: (i) group-
level constraints that protect the exposure or representation of protected groups, and (ii) individual-
level guarantees that align attention with merit over time. Group-fairness approaches include

constrained re-ranking methods for top-𝑘 results (e.g., meeting minimum group proportions while

maximizing utility) and general frameworks that optimize standard ranking objectives subject to

exposure or representation constraints. Exposure-based formulations link fairness to user attention:

visibility allocated by the ranking should be proportional to item merit, leading to constrained or

policy-learning methods that control expected exposure across groups and queries, and to practical

deployments at scale [Celis et al. 2017; Zehlike et al. 2017]. On the individual side, amortized notions

aim to equalize equity of attention across repeated rankings, ensuring that similarly relevant items

receive comparable cumulative exposure, and pairwise-fairness criteria align the probability of

correctly ordering two items with their true relevance difference [Geyik et al. 2019; Morik et al. 2020;

Singh and Joachims 2018]. A recurring systems theme is how to enforce fairness: pre-processing

relevance labels to remove bias, in-processing constrained learning-to-rank, or post-processing

re-ranking with guarantees, including stochastic policies that satisfy fairness in expectation [Beutel

et al. 2019; Biega et al. 2018]. In hybrid-platform markets, these tools translate naturally into

non-preferencing constraints: platform-owned items must not receive excess exposure beyond their

estimated merit [Diaz et al. 2020]. Other approaches enforce proportional representation or bounded

disparity while trading off with relevance [Celis et al. 2017; Yang and Stoyanovich 2017; Zehlike

et al. 2017] or maximize utility under exposure constraints. Our framework is complementary to

these approaches and attempts to directly translate the provision of the Digital Markets Act into a

fairness definition. In contrast to notions discusssed in the literature, it does not treat the outcome

𝑌 as a notion of merit, but merely as a relevant measure affecting similarity.

2 BACKGROUND
Several questions about similar products will be questions of the form “would a product sell more

than another would it be placed at another rank”. We model the distribution of sales using causal

diagrams. More specifically, we use graphical models to reason about interventions on ranking

algorithms and to make the distinction between observational and counterfactual claims precise.

A causal model consists of a directed acyclic graph (DAG) 𝐺 = (𝑉 , 𝐸) together with a collection

of structural equations {𝑋 := 𝑓𝑋 (pa(𝑋 ),𝑈𝑋 )}𝑋 ∈𝑉 , where 𝑈𝑋 are jointly independent exogenous

disturbances. The Markov factorization of the induced observational distribution is

P(𝑋1, . . . , 𝑋𝑛) =
𝑛∏
𝑖=1

P(𝑋𝑖 | pa(𝑋𝑖 )) .

Conditional independences are read from𝐺 via 𝑑-separation: two sets of variables are conditionally

independent given 𝑆 if every path between them is blocked when conditioning on 𝑆 . Intuitively,

blocked non-colliders transmit no information once conditioned on, and colliders transmit no

information unless they or their descendants are conditioned on.
2

Interventions and counterfactuals. An intervention do(𝑍 = 𝑧) replaces the structural assignment

for𝑍 by the constant 𝑧, yielding the interventional distribution P(• | do(𝑍 = 𝑧)). We will frequently

write potential outcomes 𝑌 (𝑧) for the post-intervention value of 𝑌 when 𝑍 is set to 𝑧, as well as

2
Formally, a path between two nodes in a directed acyclic graph (DAG) is blocked given a set of conditioning nodes 𝑍 if (i) it

contains a chain𝐴→ 𝐵 → 𝐶 or a fork𝐴← 𝐵 → 𝐶 where the middle node 𝐵 ∈ 𝑍 , or (ii) it contains a collider𝐴→ 𝐵 ← 𝐶

where 𝐵 ∉ 𝑍 and no descendant of 𝐵 is in 𝑍 . Two sets of nodes 𝑋 and 𝑌 are d-separated by 𝑍 if all paths between 𝑋 and 𝑌

are blocked given 𝑍 .
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nested counterfactuals such as 𝑌 (𝑟, 𝑎) for the value of 𝑌 when the rank decision is set to 𝑅 = 𝑟 and

the sensitive attribute is set to 𝐴 = 𝑎. In our setting, causal effects of ranking take the form

Δ(𝑟 ;𝑥, 𝑎) = E [𝑌 (𝑟 ) | 𝑋 = 𝑥,𝐴 = 𝑎] − E [𝑌 (𝑟 ′) | 𝑋 = 𝑥,𝐴 = 𝑎] .

Observational vs. counterfactual in a self-preferencing setting. Let 𝐴 ∈ {0, 1} indicate whether
the seller is the platform (𝐴 = 1) or a third party (𝐴 = 0), let 𝑋 collect observable features (price,

shipping, reviews), 𝑅 be the ranking action, and 𝑌 the desirable outcome (e.g., click or purchase).

Two common quantities are:

Observational Comparison One might compare, for items with similar 𝑋 shown at the

same rank 𝑟 , the average outcomes

Δobs (𝑟 ;𝑥) = E[𝑌 | 𝑅 = 𝑟, 𝐴 = 1, 𝑋 = 𝑥] − E[𝑌 | 𝑅 = 𝑟, 𝐴 = 0, 𝑋 = 𝑥] .

A nonzero Δobs does not by itself establish self-preferencing: it may reflect unobserved

differences in quality or selection (e.g., platform-owned items having different latent appeal

not captured by the features).

Counterfactual Comparison The question relevant to (non-)preferencing is whether the

platform treats otherwise similar items differently because they are platform-owned. Fix an

item with features 𝑋 = 𝑥 and consider the counterfactual contrast

Δcf (𝑟 ;𝑥) = E [𝑌 (𝑟, 1) | 𝑋 = 𝑥] − E [𝑌 (𝑟, 0) | 𝑋 = 𝑥] .

If Δcf (𝑟 ;𝑥) = 0 for all 𝑟 (or more weakly, as we shall propose, conditional on the platform’s

merit estimates Y′), then the platform’s treatment does not causally depend on 𝐴 beyond

permitted pathways. This paper will argue that self-preferencing should demand Δcf (𝑟 ;𝑥) =
0.

Example 2.1 (Buy-box placement). Suppose the platform places exactly one offer into a prominent

position (𝑅 ∈ {0, 1}). Observationally, you find that among offers with comparable 𝑋 , platform-

owned items achieve 12% click-through at 𝑅 = 1 while third-party items achieve 10%. This yields

Δobs (1;𝑥) = 0.02. A counterfactual analysis, however, randomizes buy-box assignment for a

stratified subset with identical predictedmeritY′ and estimatesE[𝑌 (1, 1) | Y′, 𝑋 ]−E[𝑌 (1, 0) | Y′, 𝑋 ].
If this difference is statistically indistinguishable from zero while E[𝑌 (1) | Y′, 𝑋 ] > E[𝑌 (0) | Y′, 𝑋 ]
holds for both groups, the platform is not self-preferencing: the higher observed clicks for platform

items were due to merit captured by Y′, not to 𝐴 itself. Conversely, a positive Δcf (1;𝑥) after
conditioning on Y′ indicates a direct effect of platform association to ranking, suggesting self-

preferencing.

Causal fairness. Causality of fairness definitions is crucial in this paper. Kilbertus et al. [2018a]

propose explicitly modeling a causal model to identify and remove “discriminatory paths” from 𝐴

to the outcome 𝑅, ensuring that only permissible causal influences remain. They also introduce the

concept of resolving variables. Similarly, Kusner et al. [2018] introduce counterfactual fairness, which
requires that for any individual, the action 𝑅 remains unchanged under a hypothetical intervention

setting 𝐴 to a different value. Loftus et al. [2018] extend this perspective by distinguishing different

types of protected attributes—direct, indirect, and spurious—and propose procedures to block unfair

channels while preserving legitimate ones. Nabi and Shpitser [2018] further develop fair inference on
outcomes by formulating path-specific effects and adjusting for mediators that carry unacceptable

bias.
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3 A GENERAL DEFINITION OF PREFERENCING
Consider 𝑛 offers 𝑖 ∈ {1, . . . , 𝑛}. Each offer has features 𝑋𝑖 ∈ X, a sensitive attribute 𝐴𝑖 ∈ {0, 1} (e.g.,
1 if the platform/agent is the seller or otherwise affiliated), an outcome 𝑌𝑖 ∈ {0, 1} (e.g., click or

purchase
3
), and a platform action 𝑅 ∈ R that allocates slots to offers. Let Y′𝑖 = (𝑌 ′𝑖𝑟 )𝑟 ∈R denote the

platform’s (or agent’s) outcome for 𝑖 when ranking 𝑟 is chosen. Write (·)−𝑖 for the vector over all
agents except 𝑖 .

3.1 Definition via Potential Outcomes
Outcomes may depend on the full ranking and on all offers’ attributes. We therefore treat the

competitive context for offer 𝑖 as
𝐶𝑖 ≡ (𝑋−𝑖 , 𝐴−𝑖 ),

We now state the two core requirements.

Definition 3.1 (Calibration). For each session and offer 𝑖 , Y′𝑖 is a calibrated outcome estimate, for

every ranking 𝑟 ∈ R,

E
[
𝑌 ′𝑖𝑟

��𝑋𝑖 , 𝐴𝑖 ,𝐶𝑖

]
= E [𝑌𝑖 |𝑋𝑖 , 𝐴𝑖 ,𝐶𝑖 , do(𝑅𝑖 = 𝑟 )] ,

The right-hand side is a potential-outcome object: the expected outcome for 𝑖 under ranking 𝑟

while holding the rest of the context 𝐶𝑖 fixed.

Definition 3.2 (Non-preferencing). A ranking rule 𝑅 is non-preferencing if there exist calibrated

estimates (Y′𝑖 )𝑛𝑖=1 such that, for every seller 𝑖

𝐴𝑖 ⊥⊥ 𝑅𝑖 |Y′𝑖 ,𝐶𝑖 , (1)

𝑌𝑖 ⊥⊥ Y′𝑖 |𝐴𝑖 , 𝑅,𝐶𝑖 . (2)

Condition (1) rules out any residual direct effect of affiliation 𝐴𝑖 on the slot assignment for 𝑖 once

the predicted match values and the competitive context are fixed. Condition (2) states that Y′𝑖 carries
no additional information about realized outcomes beyond (𝐴𝑖 , 𝑅,𝐶𝑖 ); it is a calibrated prediction

built from historical data and experimentation.

Remark 1. (i) The symmetric definition above bans preferential treatment in either direction. If
one only aims to ban self-preferencing, (1) can be weakened to an inequality on exposure or placement
probabilities for 𝐴𝑖 = 1 versus 𝐴𝑖 = 0 given (Y′𝑖 ,𝐶𝑖 ). (ii) We do not impose 𝐴𝑖 ⊥⊥ 𝑋𝑖 for now, proxy
issues are handled in Section 4 and operationalized in Section 5.

Example 3.3 (Logit demand). Consider a single user request surfacing 𝑛 offers. The platform

assigns a (possibly partial) ranking 𝑅, with slot-specific position effects 𝜌𝑟 ∈ R and an outside

option with utility normalized to 0. Assume that user purchases 𝑌𝑖 are generated through a random

utility model

𝑈𝑖 = 𝛽⊤𝑋𝑖 + 𝛼𝐴𝑖 + 𝜌𝑅𝑖 + 𝜀𝑖 , 𝜀𝑖
i.i.d.∼ T1EV,

so that the probability of choosing offer 𝑖 is multinomial logit:

P(𝑌𝑖 = 1 | 𝑋,𝐴, 𝑅) =
exp(𝛽⊤𝑋𝑖 + 𝛼𝐴𝑖 + 𝜌𝑅𝑖 )

1 +∑𝑛
𝑗=1 exp(𝛽⊤𝑋 𝑗 + 𝛼𝐴 𝑗 + 𝜌𝑅 𝑗

) .

3
We restrict here to binary outcomes as in virtually all settings of relevance for ecommerce and social media either a

clickthrough, or purchase (conversion) are relevant. The theory here generalizes with richer outcomes, in which case we

need to replace the outcome with a relevant expectation.
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𝐴

𝑋 𝑅

𝑌

Fig. 2. A ranking setting. A platform ranking decision 𝑅 is affected by algorithmic features 𝑋 , potentially
including 𝐴. Ranking, features, and 𝐴 determine a desirable outcome. The contested question is whether the
platform action 𝑅 may depend on the source of the product 𝐴.

Fix a realized ranking 𝑅 and define the slot-swap potential outcome𝑌𝑖 (𝑟 ;𝑅−𝑖 ) as the choice indicator
if we place 𝑖 in slot 𝑟 while holding other items’ slots 𝑅−𝑖 fixed. Then the calibrated deterministic

predictor for item 𝑖 is

𝑌 ′𝑖𝑟 (𝑋,𝐴) =
exp(𝛽⊤𝑋𝑖 + 𝛼𝐴𝑖 + 𝜌𝑟 )

1 +∑𝑗≠𝑖 exp(𝛽⊤𝑋𝑖 + 𝛼𝐴𝑖 + 𝜌𝑟 )
.

Under Definition 3.2, for any fixed competitive context 𝐶𝑖 = (𝑋−𝑖 , 𝐴−𝑖 ) the distribution of 𝑅𝑖 may

depend on Y′𝑖 and 𝐶𝑖 but not on 𝐴𝑖 beyond its contribution to Y′𝑖 . In particular, any regression or

conditional randomization test of 𝑅𝑖 on (Y′𝑖 ,𝐶𝑖 , 𝐴𝑖 ) should find no residual effect of 𝐴𝑖 once (Y′𝑖 ,𝐶𝑖 )
are controlled for.

Other specifications. The definition and tests do not rely on the logit form. For instance, one may

model two-stage behaviorwhere an offer enters a consideration set with probability𝛾 (𝑋𝑖 , 𝐴𝑖 , 𝑅𝑖 ) (cas-
cade or position-based click models), followed by a choice among considered items via multinomial

logit, nested logit, or mixed logit. In such cases, 𝑌 ′𝑖𝑟 is the model-implied E[𝑌𝑖 | do(𝑅𝑖 = 𝑟 ), 𝑋,𝐴,𝐶𝑖 ];
the non-preferencing conditions (1)–(2) remain unchanged.

3.2 A Graphical Definition
We can derive the definition of self-preferencing graphically (where we drop for simplicity depen-

dence on 𝑖 and implicitly condition on𝐶𝑖 ). In principle, all conditions given in Figure 2 are possible.

This diagram is equivalent to assuming that 𝑋 and 𝐴 are unconditionally independent, 𝐴 ⊥⊥ 𝑋 .

The desirable outcomes (e.g., sales) may be affected by all other attributes (the platform product

might be more or less desirable, even for the same observable features 𝑋 ; features 𝑋 , including the

price of the good, affect the outcome; and the ranking decision changes the outcome if it steers

consumers). 𝑅 in this model is potentially affected by both 𝐴 and 𝑋 .

The ranking setting has led the literature, and Regulation (EU) 2019/1150 of the European Parliament
and of the Council of 20 June 2019 on promoting fairness and transparency for business users of online
intermediation services and amending Regulation (EU) No 1215/2012 (Platform-to-Business Regulation)
[2019] to focus on differential treatment, so the differences in 𝑅 | 𝑋,𝐴 = 𝑎 for different values

of the sensitive attribute 𝑎 ∈ {0, 1}, suggesting that 𝑅 should not depend on the value of 𝐴,

Figure 3. Following the literature in algorithmic fairness [Barocas and Selbst 2016], we could call

this requirement unawareness.
Unawareness (partly also called the controlling-on-observables approach) is argued to be unde-

sirable in Industrial Organization [Hartzell and Haupt 2025; Lee and Musolff 2021; Reimers and

Waldfogel 2023]. The main objection is that unawareness does not capture sufficiently what it

means to be “similar”. The thought experiment that Hartzell and Haupt [2025], Lee and Musolff

[2021], and Reimers and Waldfogel [2023] and others entertain is that products that a platform sells
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𝐴

𝑋 𝑅

𝑌

Fig. 3. The unawareness solution is to prohibit a causal effect of the platform identifier on ranking (𝐴→ 𝑅),
here denoted with a dashed line.

𝐴

𝑋 𝑅

Y′
1: | R | 𝑌

Fig. 4. Non-Self-Preferencing. While a causal effect of the platform dummy variable 𝐴 on the outcome
is prohibited, an indirect effect via an estimate of the desirable outcome 𝑌 is necessary. Together with
Definition 3.1 the conditional independence implied by this causal graph define non-preferencing.

might be more desirable for consumers, but that the relevant desirability in observables other than

the sensitive attribute.

This allows for a direct fix of the definition. Ranking may only depend on whether it is sold by the
platform through a causal path through an estimates of sales, Figure 4. Here, Y′ is an estimate of sales.
In the language of Kilbertus et al. [2018b], this means that an estimate of sales Y′ is a resolving
variable for the differential treatment caused by the sensitive variable 𝐴.

The conditional independence conditions that Figure 4 expresses are the following:
4

𝐴 ⊥⊥ 𝑋 (3)

𝐴 ⊥⊥ 𝑅 | Y′ (4)

𝑌 ⊥⊥ Y′ | 𝐴, 𝑅. (5)

We can view the additional requirement (3) as a non-proxy condition—𝐴 must be unconditionally

independent of 𝑋 .

4 PROXIES, OUTCOMES, AND INTERACTIONS
Several additional complications arise in realistic platforms. This section sharpens the discussion

using the lens of algorithmic fairness and makes explicit what must be ruled out, what may be

permitted, and how each issue surfaces in the test proposed in Section 5.

4.1 Features 𝑋 and the sensitive attribute 𝐴 are correlated
Treating 𝐴 solely as a binary platform-identity flag is often insufficient because many observable

covariates 𝑋 partially reveal 𝐴. In the language of Kilbertus et al. [2018a], 𝑋 may contain proxies for
𝐴. In marketplace settings, fulfillment mode, return policy, or seller ratings can correlate strongly

with platform identity (e.g., shipped by the platform), as illustrated in Figure 1.

4
That is, these are the 𝑑-sarated triples in the directed graph depicted in Figure 4.
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𝐴

𝑋 𝑅

Y′ 𝑌

𝐸

Fig. 5. Endogeneity and confounding. Latent decisions 𝐸 (e.g., entry and pricing) affect 𝑋 and 𝑌 and may
be influenced by 𝐴, biasing naive estimates of E[𝑌 | 𝑋,𝐴, 𝑅]. Valid construction of Y′ requires randomized
exposure or credible instruments.

We formalize proxy detection and usage as follows. For a candidate feature 𝑋 𝑗 , define a proxy
strength functional

ProxyStrength(𝑋 𝑗 ;𝐴) ∈ {|Corr(𝑋 𝑗 , 𝐴) |, 𝐼 (𝑋 𝑗 ;𝐴)} (6)

where 𝐼 (•; •) denotes mutual information. A feature is proxy-admissible for direct use in 𝑅 if

ProxyStrength(𝑋 𝑗 ;𝐴) ≤ 𝜏 for a pre-declared threshold 𝜏 . Let𝑊 ⊆ 𝑋 be the set of proxy-admissible

features. All non-admissible features may still enter the prediction stage for Y′ but cannot enter the
ranking rule directly. This implements the resolving-variable principle of Kilbertus et al. [2018a]:

any permissible dependence on 𝐴 must operate via Y′.

4.2 The value 𝑌 is not clearly defined
Our framework assumes that 𝑌 captures the ranking-relevant notion of “similarity”. In practice,

this similarity is given by anything that would lead to a different behavior of the consumer. This

would be given, fo example, by:

clicks: 𝑌 ∈ {0, 1} for a click,
conversion: 𝑌 ∈ {0, 1} for apurchase.

In general, any metric that is a user action may be taken as an outcome measure 𝑌 .

4.3 The ranking 𝑅 interacts with other ranking mechanisms
Large platforms deploy multiple steering mechanisms: homepage recommendations, search order-

ing, product-page placement (e.g., Buy Box), and conversational surfaces. Let S index surfaces and

write 𝑅 = (𝑅 (𝑠 ) )𝑠∈S . Then, it follows directly that if for some 𝑠 we have that Definition 3.2 fails

conditional on 𝑅−𝑠 , then it also fails for 𝑅 = (𝑅 (𝑠 ) )𝑠∈S . Thus, demonstrating preferencing on any
surface suffices to demonstrate preferencing overall.

4.4 Features 𝑋 and rankings 𝑅 are endogenous
Estimating a calibrated Y′ from observational logs is challenging because 𝑅 is a function of (𝑋,𝐴)
and because seller and platform decisions create latent confounding. In Figure 5, a latent variable 𝐸

(e.g., entry and pricing decisions) affects both 𝑋 and 𝑌 and may be influenced by 𝐴, and require

careful causal inference.

4.5 Practical implications for enforcement.
In light of these complications, Section 5 requires (i) a proxy screen determining which features

may enter 𝑅 directly, (ii) an explicit construction of Y′ with calibration diagnostics, and (iii) a test

of the predicted outcomes under different sensitive attributes and the same ranking. Together

these elements ensure that any residual dependence of 𝑅 on 𝐴 is either eliminated or channeled

exclusively through a causally justified resolving variable.
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5 DEMONSTRATING NON-SELF-PREFERENCING
This section expands the practical protocol that allows a hybrid platform to demonstrate that its

ranking rule 𝑅 satisfies our non-preferencing criterion from Definition 3.2. The regulator’s null

hypothesis is that the platform does not self-preference, i.e.,

𝐻0 : 𝐴 ⊥⊥ 𝑅 | Y′ with calibrated Y′ as in Definition 3.1. (7)

Rejection of (7) constitutes evidence of self-preferencing. The protocol below is designed to be

auditable, modular, and feasible at scale.

5.1 A Regulatory Artifact
Auditing requires session-level logs that include, for each candidate 𝑖 surfaced to a user request (e.g.,

a query or page view): (i) a snapshot of the ranking policy 𝜋 (𝑥, y′) and the prediction algorithm

producing the vectors Y′𝑖 = (𝑌 ′𝑖𝑟 )𝑟 ∈R , 𝑖 = 1, 2, . . . , 𝑛 at decision time, (ii) a minimal feature audit

trace𝑊𝑖 (the subset of features that the platform claims enter 𝑅 directly), (ii) the sensitive attribute

𝐴𝑖 , and (iv) outcomes 𝑌𝑖 (click, add-to-cart, purchase, or whatever is designated as the desirable

outcome).

Step 1: Proxy screening for features used directly in 𝑅. Let𝑋 = (𝑊,𝑍 ) split features into𝑊 (permit-

ted to enter 𝑅 directly) and 𝑍 (proxies that are not permitted to enter 𝑅 directly). The platform must

quantify the strength of association between each candidate feature and 𝐴 ex ante, using correla-

tion (Corr(𝑋 𝑗 , 𝐴) |) or mutual information (𝐼 (𝑋 𝑗 ;𝐴)). Denote ProxyStrength(𝑊𝑗 ;𝐴) this measure of

association the and publish the threshold 𝜏 such that all𝑊 satisfy ProxyStrength(𝑊𝑗 ;𝐴) ≤ 𝜏 .

Step 2: Constructing a calibrated resolving variable Y′. Validity in Definition 3.1 is causal; mere

supervised predictions are insufficient when 𝑅 is endogenous. Two implementation routes are

acceptable:

Randomized exposure (preferred) Reserve a small traffic slice (e.g., 0.01%) wherein ranking

is randomized using a known stochastic policy 𝜋0 (𝑟 | 𝑥, 𝑎). Learn 𝜇𝑟 (𝑥, 𝑎) := E[𝑌 | 𝑋 =

𝑥,𝐴 = 𝑎, 𝑅 = 𝑟 ] on this slice. Set 𝑌 ′𝑟 (𝑥, 𝑎) := 𝜇𝑟 (𝑥, 𝑎) and report calibration diagnostics:

CalErr𝑟 := E
[
(1{𝑅=𝑟 } · (𝑌 − 𝜇𝑟 (𝑋,𝐴)))2

]
, 𝑟 ∈ R . (8)

Instrumental-variables or doubly-robust identification When randomization is infeasi-

ble, document instruments (policy shocks, eligibility thresholds) affecting 𝑅 but not 𝑌

except through 𝑅, and estimate 𝜇𝑟 via a doubly robust (DR) estimator [Chernozhukov et al.

2018]. Let 𝑝𝑟 (𝑥, 𝑎) := P(𝑅 = 𝑟 | 𝑋 = 𝑥,𝐴 = 𝑎) be the propensity (known under holdout

randomization or estimated otherwise). The DR functional

𝜓𝑟 (𝑥, 𝑎) := 𝜇𝑟 (𝑥, 𝑎) +
1{𝑅=𝑟 }
𝑝𝑟 (𝑋,𝐴)

(
𝑌 − 𝜇𝑟 (𝑋,𝐴)

)
(9)

is unbiased for E[𝑌 | 𝑋 = 𝑥,𝐴 = 𝑎, do(𝑅 = 𝑟 )] if either the propensity or outcome model

is correct. Set 𝑌 ′𝑟 (𝑥, 𝑎) := 𝜇𝑟 (𝑥, 𝑎) and publish sensitivity of the next step to alternative

specifications of 𝜇𝑟 and 𝑝𝑟 .

Step 3: Structural fit test for 𝜋
(
𝑥, (𝜇𝑟 (𝑥, 𝑎, 𝑐))𝑟 ∈R

)
. As a third estimate, provide evidence that the

model fit on a smaller dataset also fits on all data on the platform. To devise this goodness-of-

fit test, index requests by 𝑠 = 1, . . . ,𝑚. Request 𝑠 surfaces a candidate set I𝑠 with item features

{(𝑋𝑠𝑖 , 𝐴𝑠𝑖 )}𝑖∈I𝑠 and competitive context 𝐶𝑠 (e.g., query, page, surface), yielding a ranking action 𝑟𝑠 .

The declared ranking policy specifies a conditional distribution over rankings

𝜋 (𝑅𝑠 | 𝑋𝑠 , 𝑆𝑠 ,𝐶𝑠 ), where
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Report inability to reject the conditional goodness-of-fit test

𝐻
𝜋 (𝜇 )
0

: P(𝑅𝑠 | 𝑋𝑠 , 𝐴𝑠 ,𝐶𝑠 ) = 𝜋
(
𝑅𝑠 | 𝑋𝑠 , 𝑆𝑠 ,𝐶𝑠

)
for all 𝑠 = 1, 2, . . . ,𝑚.

5.2 Relationship to outcome-based and conditioning-on-observables tests
The proposed SPS test operationalizes the outcome-based spirit in Aguiar et al. [2021], Jürgens-

meier and Skiera [2023], and Reimers and Waldfogel [2023] while avoiding the pitfalls of naïvely

conditioning on observables: any permissible dependence on 𝐴 must flow through Y′.

5.3 Putting it all together
As part of a Non-Preferencing Card, ship the following pieces for each relevant ranking product:

(1) Proxy screen ranking features to obtain𝑊 ; publish thresholds for proxy association.

(2) Obtain calibrated Y′ via randomized exposure or DR with instruments; publish calibration

and sensitivity.

(3) Test out-of-sample goodness-of-fit of 𝜋 and 𝜇.

Passing all steps provides a concise, testable demonstration that observed dependence on platform

identity, if any, operates exclusively through predicted match value, i.e., no self-preferencing.

6 CONCLUSION
This paper formalizes self-preferencing in algorithmic ranking as a causal fairness problem. We

model platform identity𝐴, features 𝑋 , actions 𝑅, and outcomes 𝑌 in a directed graphical framework

and define non-preferencing as the existence of a resolving variable Y′ that is a calibrated predictor

of a consumer action (in virtually all cases a click or purchase) under alternative platform ranking

actions. This lens clarifies how classical objections to “unawareness” in Industrial Organization

can be addressed without granting the platform carte blanche to use 𝐴: dependence on platform

identity is permitted only to the extent that it changes predicted outcomes in a way that is causally

justified.

We then translate the definition into an auditable protocol: proxy screening for direct features,

construction and calibration of Y′ using randomized or instrumental-variable-based identification

tests of differential effects. Conceptually, our tests bridge outcome-based preferencing diagnostics

in IO with fairness notions in the ranking literature, while making the causal pathways explicit.

We highlight that infrastructure to detect self-preferencing will benefit in particular the respon-

sible development of consumer AI agents, which may exhibit much higher consumer steering than

current platform technologies.
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