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Abstract 

This paper examines competitive dynamics in artificial intelligence during a period 

of unprecedented infrastructure investment that may not be economically 

sustainable. A September 2025 Bain & Company analysis estimates AI firms face 

an $800 billion annual revenue gap by 2030 to fund capital expenditures. We 

calculate this gap expands to over $1.5 trillion annually when accounting for the 

accelerated replacement cycles of AI infrastructure: chips have 1-3 year useful lives 

due to technological obsolescence and physical failure, yet firms currently 

depreciate these assets over 5-6 years. This discrepancy between accounting 

assumptions and operational reality creates what we term a “capital subsidy” that 

enables incumbent coalitions to pursue aggressive application-layer strategies 

during the critical market formation window. 

The timing of this revenue challenge matters for competition. Market structure at 

the application layer—where enterprises choose AI models to integrate into their 

operations—is being determined now, while the long-run economics of the 

infrastructure buildout remain uncertain. Hyperscaler-model developer coalitions 

(Microsoft-OpenAI, Amazon-Anthropic, Google-Gemini) are establishing deep 

enterprise integrations through pricing and capacity expansion enabled by the 

capital subsidy. If these investments prove unsustainable once assets require 

replacement at actual operational lifecycles, the question becomes whether 

early-mover advantages and customer lock-in will persist or whether market 

structure remains contestable. 

We analyze three competitive scenarios. First, if model capabilities continue scaling 

meaningfully with increased compute, training capacity creates lasting advantages 

through superior model quality—though this scenario appears increasingly 

implausible as capabilities plateau. Second, if model capabilities plateau and 

application-layer switching costs prove durable, incumbent coalitions may retain 

dominance even when better alternatives emerge, analogous to Google's search 

position but with substantially higher technical integration barriers. Third, if 

capabilities plateau but switching costs remain manageable through 

standardization and interoperability, the capital subsidy creates temporary 

distortions without permanent competitive foreclosure. We document how 

 



 

depreciation conventions, coalition financing arrangements, and enterprise 

integration patterns suggest the second scenario is most likely. 

The analysis reveals how circular vendor financing structures amplify these 

dynamics. Unlike the 2001 telecom bust where long-lived assets became available to 

new entrants at fire-sale prices, AI chips’ short useful lives mean excess capacity 

cannot enable competitive entry if current buildouts prove excessive—potentially 

cementing the market structure formed during the subsidy window regardless of 

whether underlying economics are sustainable. 

Drawing on industry financial data, capital expenditure disclosures, and coalition 

partnership structures, we find that accounting practices may be obscuring the true 

cost of maintaining AI infrastructure leadership during the critical period when 

application-layer customer relationships are being established. We propose 

enhanced disclosure requirements for infrastructure replacement cycles and 

interoperability standards to preserve competitive entry opportunities while market 

structure remains fluid. 

Keywords: artificial intelligence, competition policy, accounting standards, 

infrastructure investment, vendor financing, market structure, switching costs, 

application layer competition 

1. Introduction 

1.1 The $1 Trillion Question 

In 2025, eight major technology companies are projected to invest over $300 billion 

in AI infrastructure (Goldman Sachs 2025). This represents one of the largest 

industrial capital buildouts in United States history, comparable in scale to the 

railroad expansions of the nineteenth century or the interstate highway system of 

the twentieth century. Yet this massive deployment rests on economic foundations 

that appear fundamentally unstable. 

A September 2025 analysis by Bain & Company estimates that AI firms will face an 

annual revenue shortfall of approximately $800 billion in 2030 to fund their ongoing 

capital expenses (Bain & Company 2025). This revenue gap suggests the industry 

faces a sustainability crisis even before accounting for any systematic mispricing of 

asset replacement costs. Our analysis indicates that when realistic useful life 

assumptions replace current accounting conventions, this revenue gap expands to 
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over $1.5 trillion annually—nearly doubling the already substantial sustainability 

challenge identified by Bain. 

The core accounting puzzle is straightforward: the specialized chips powering AI 

workloads have a useful economic lifespan of one to three years due to rapid 

technological obsolescence and physical degradation under high-utilization 

conditions, but companies depreciate these assets over five to six years. This 

mismatch creates what we term a “capital subsidy”—an apparent profitability 

cushion that enables incumbent coalitions to pursue strategies during the critical 

market formation window that would appear unsustainable under more realistic 

assumptions. 

1.2 Where Competition Happens: The Application Layer 

A critical insight for competition analysis is that we believe market power in AI is 

not primarily determined at the model development layer. As model capabilities 

plateau and open-weight alternatives approach proprietary model quality, model 

development is commoditizing. We argue that competition is instead concentrating 

at the application layer—where enterprises integrate AI capabilities into their 

operations and where customer relationships, switching costs, and integration 

depth determine competitive outcomes. 

The generative AI stack can be conceptualized in three layers: 

Infrastructure Layer: Hyperscalers providing compute, storage, and networking 

(Microsoft Azure, Amazon AWS, Google Cloud) 

Model Layer: Developers creating and serving AI models (OpenAI, Anthropic, 

Google DeepMind, Meta) 

Application Layer: Enterprises integrating AI capabilities into business 

operations, and specialized AI application builders creating vertical solutions 

The market structure is coalescing around vertically-integrated coalitions spanning 

infrastructure and model layers: Microsoft-OpenAI, Amazon-Anthropic, and 

Google's integrated structure. These coalitions compete primarily at the application 

layer—not for which model is technically superior, but for which coalition's 

integrated stack becomes embedded in enterprise operations. 

The capital subsidy matters because it enables incumbent coalitions to establish 

application-layer dominance during the critical window when customer 
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relationships are being formed. By pricing aggressively while reporting sustainable 

economics, coalitions can lock in enterprise customers whose switching costs will 

prevent competitive correction even when: (1) true replacement costs become 

visible, (2) model capabilities commoditize, and (3) better alternatives emerge. 

Thus, this is fundamentally a story about application-layer foreclosure, not 

model-layer competition. 

1.3 Research Questions and Contribution 

This paper addresses three central questions: 

First: What is the magnitude of the capital subsidy created by the mismatch 

between accounting depreciation and actual useful life of AI infrastructure, and how 

does this subsidy flow through coalition structures to enable application-layer 

competitive strategies during the market formation window? 

Second: Under what technological and market scenarios might the competitive 

advantages established during this formation window persist or dissipate? 

Specifically: 

●​ If model capabilities continue scaling, does training capacity create durable 

advantages through superior quality? 

●​ If capabilities plateau and application-layer switching costs prove high, can 

incumbent coalitions maintain dominance even when better alternatives 

emerge? 

●​ If capabilities plateau but switching costs remain manageable, does the 

capital subsidy create only temporary distortions without permanent 

foreclosure? 

Third: How do circular vendor financing structures amplify the competitive 

implications of the capital subsidy, and why does the short useful life of AI 

infrastructure create different dynamics than previous technology booms when 

financial pressure emerges? 

Our analysis contributes to several literatures. First, we add to research on 

accounting policy's role in capital markets by examining how depreciation 

assumptions may affect competitive dynamics in capital-intensive technology 

markets during their formation period. Second, we contribute to the literature on 

vertical relationships and competition in digital platforms by analyzing coalition 

structures where infrastructure providers partner with application-layer 
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competitors. Third, we build on emerging work on AI market structure by 

examining how competitive dynamics increasingly concentrate at the application 

layer as model development commoditizes, and exploring the conditions under 

which early advantages in this layer might prove durable. Fourth, we extend the 

literature on vendor financing by analyzing how circular capital flows interact with 

short asset lifecycles to change the competitive implications of financial instability. 

Unlike telecommunications, where long-lived assets could be redeployed by new 

entrants after market corrections, short useful life in AI infrastructure means 

excess capacity cannot enable competitive entry—fundamentally changing the 

policy calculus. 

1.4 The Strategic Logic of Temporary Subsidies 

The capital subsidy creates a distinctive strategic opportunity. Incumbent coalitions 

need not rely on the subsidy indefinitely. Instead, the strategic logic is temporal: 

Years 1-3 (Market Formation Window): Use the capital subsidy to price 

aggressively, expand capacity rapidly, and establish deep enterprise integrations at 

the application layer. Report profitability that attracts capital at favorable terms. 

Build customer relationships during the critical period when market structure is 

being determined. 

Years 4-5 (Crystallization Period): When accounting might catch up to 

operational reality and revenue gaps become visible, customer relationships are 

already locked in through switching costs, integration depth, organizational inertia, 

and multi-year contracts. The market structure formed during the subsidy window 

persists regardless of whether underlying economics are sustainable. 

The question is not whether this economics works indefinitely. The question is 

whether the market structure crystallized during the formation window proves 

durable enough that competitive correction becomes impossible even when better 

technology and more realistic economics emerge. 

The parallel to Google’s dominance in search is instructive. Google did not need to 

maintain its advantages through superior technology indefinitely. Once default 

positions and integration created lock-in, competitive alternatives struggled to gain 

traction even when offering comparable or superior quality. The Department of 

Justice’s antitrust case demonstrated that lock-in proved decisive despite 

apparently low switching costs. 
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Application-layer integration in enterprise AI creates switching costs orders of 

magnitude higher than consumer search engine selection. If lock-in proved durable 

in search, application-layer lock-in in AI may prove even more persistent. 

1.5 Structure 

The paper proceeds as follows. Section 2 reviews relevant literature on competition 

in technology markets, accounting policy effects, and the economics of 

application-layer competition. Section 3 presents our analytical framework and 

documents the asset life mismatch. Section 4 examines the revenue sustainability 

gap and its interaction with the capital subsidy. Section 5 analyzes how the subsidy 

flows through coalition structures to enable application-layer strategies. Section 6 

examines three scenarios for competitive dynamics under different technological 

trajectories. Section 7 examines how vendor financing amplifies the competitive 

harm in the most concerning scenario. Section 8 proposes policy responses. Section 

9 concludes. 

2. Background and Literature 

2.1 Competition and Market Structure in Technology Markets 

The economics literature on competition in technology markets emphasizes several 

dynamics relevant to understanding application-layer competition in AI. Network 

effects and switching costs can create durable competitive advantages even when 

alternative products are technically superior (Farrell and Klemperer 2007; Shapiro 

and Varian 1998). Timing matters profoundly in markets characterized by learning 

curves and scale economies—early movers can establish positions that later 

entrants struggle to overcome regardless of technological superiority (Arthur 1989; 

Lieberman and Montgomery 1988). 

Recent antitrust cases have demonstrated how integration depth and default 

positions create lock-in even when switching costs appear minimal. The Google 

search case revealed that default search engine placements created persistent 

competitive advantages despite the apparent ease of consumer switching—users 

could change search engines with “one click” yet rarely did. Default positions 

combined with organizational and interface integration proved decisive. 

These insights apply with greater force to application-layer competition in 

enterprise AI. Enterprise integration requires months of engineering work, 

multi-year contracts create financial switching costs, security certifications and 
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compliance frameworks are built around specific technology stacks, and 

organizational workflows and training are developed around particular providers. If 

lock-in proved durable in consumer search with trivial switching costs, 

application-layer integration with substantial switching costs may create even more 

persistent competitive advantages. 

2.2 Vertical Integration and Foreclosure in Digital Markets 

The literature on vertical foreclosure examines conditions under which vertically 

integrated firms can disadvantage non-integrated rivals (Rey and Tirole 2007; Salop 

and Scheffman 1983). Traditional theories focus on access to essential inputs or 

distribution channels. Our analysis extends this framework by examining how 

accounting treatment of shared infrastructure investments can create effective 

subsidies that flow through vertical partnerships to affect downstream competition 

at the application layer. 

Recent work on digital platform competition emphasizes the role of ecosystem 

orchestration and complementary investments (Jacobides, Cennamo, and Gawer 

2018). In “platform ecosystems,” value creation depends on coordinated investments 

by multiple parties, and the distribution of rents depends critically on bargaining 

power and contract structures (Gans 2022). Vertical integration in digital markets 

often serves to secure access to complementary capabilities and to coordinate 

investments rather than to foreclose rivals from essential inputs (Crémer, de 

Montjoye, and Schweitzer 2019). 

Our contribution is to show how accounting conventions affect the apparent 

economics of these partnerships during critical market formation periods, enabling 

strategies at the application layer that would appear unsustainable under realistic 

cost accounting. The foreclosure concern is not that rivals are denied access to 

infrastructure, but that application-layer competition occurs on a tilted playing field 

where coalition members’' costs are systematically understated. 

2.3 Application Layer Competition and Customer Lock-In 

A growing literature examines competition dynamics in enterprise software 

markets where switching costs are substantial (Shapiro and Varian 1998; 

Greenstein 1993). Enterprise software exhibits several characteristics that create 

customer lock-in: 
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●​ Integration costs: Enterprise systems require months of implementation and 

integration work 

●​ Training and workflow: Organizations build processes around specific 

platforms 

●​ Data lock-in: Accumulated data becomes difficult to migrate 

●​ Certification and compliance: Security and regulatory frameworks are built 

around specific solutions 

●​ Contract structure: Multi-year agreements with penalties for early 

termination 

AI application-layer competition exhibits all these characteristics with additional 

switching costs unique to AI systems: model-specific prompt engineering, evaluation 

frameworks tuned to particular model behaviors, fine-tuning datasets optimized for 

specific models, and continuous integration where AI capabilities are embedded 

throughout organizational workflows rather than isolated in specific applications. 

The enterprise software literature demonstrates that even substantial quality or 

price advantages may not induce switching when integration costs are high 

(Greenstein 1993). Our analysis builds on these insights by examining how 

temporary cost advantages during the formation period can establish lock-in that 

persists even when the cost advantages disappear. 

2.4 Accounting Policy and Real Effects on Competition 

A substantial literature documents “real effects” of accounting policy—ways that 

financial reporting conventions affect actual business decisions rather than merely 

their representation (Kanodia and Sapra 2016; Leuz and Wysocki 2016). 

Depreciation policy affects investment decisions by changing reported profitability 

and thus capital costs (Bushman and Smith 2001). Firms facing more favorable 

accounting treatment can raise capital at lower cost and appear more attractive to 

investors, affecting competitive dynamics (Ball, Robin, and Wu 2003). 

However, existing literature has not examined how accounting policy affects 

competitive dynamics in nascent markets where capital intensity is extreme, 

technological change is rapid, and competition concentrates at the application layer 

rather than at the production layer. Previous work on accounting policy and 

competition has focused primarily on how reporting affects investment decisions or 

capital costs within established market structures (Graham, Harvey, and Rajgopal 

2005). 
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Our analysis demonstrates that depreciation conventions can shape market 

structure itself by affecting which firms can pursue aggressive application-layer 

strategies during critical formation periods while maintaining the appearance of 

financial viability. The capital subsidy matters not because it affects long-run cost 

structures, but because it enables strategic positioning during the window when 

application-layer customer relationships are being established. 

2.5 Vendor Financing and Market Stability 

Vendor financing—when suppliers provide funding to enable customers to purchase 

their products—has received attention primarily in contexts of market instability. 

The telecommunications equipment market in the late 1990s demonstrated risks 

when vendors financed their own sales at scale (Partnoy 2003). Equipment makers 

extended billions in financing to telecommunications companies, enabling purchases 

that would not have occurred at arm’s length. When customers failed, vendor 

financing became bad debt and equipment sales that had appeared to represent 

genuine market demand instead reflected artificial demand created by circular 

financing. 

Petersen and Rajan (1997) examine vendor financing more generally, identifying 

conditions under which such arrangements serve legitimate business purposes 

versus when they signal financial distress or artificial demand creation. The key 

insight is that vendor financing becomes problematic when it creates circular flows 

where supplier investments return as equipment purchases, making it difficult to 

distinguish genuine market demand from artificially sustained activity. 

We build on this literature by analyzing how vendor financing interacts with short 

asset life to create different competitive dynamics than in previous technology 

booms. When assets have three-year useful lives rather than decades, excess 

capacity from failed investments does not provide a competitive foundation for new 

entrants. This changes the policy implications of circular financing in important 

ways. 

3. The Asset Life Mismatch: Evidence and Magnitude 

3.1 Technical Evidence on Useful Life 

Multiple independent sources converge on a one-to-three-year useful lifespan for AI 

infrastructure chips. Technical evidence comes from three sources: engineering 

assessments, observed replacement patterns, and technological obsolescence rates. 
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Physical Degradation: A senior Google architect, speaking on condition of 

anonymity to industry press, assessed that graphics processing units (GPUs) 

running at 60-70% utilization—standard for AI training and inference 

workloads—survive one to two years of operation, with three years representing a 

maximum useful life before physical failure (SemiAnalysis 2024). The limiting 

factors are thermal stress from continuous high-power operation and electrical 

degradation of components under sustained load. AI workloads stress hardware 

more intensively than traditional computing applications, running GPUs near 

maximum capacity continuously rather than in burst patterns typical of other 

workloads. 

Technological Obsolescence: Physical failure represents only one dimension of 

asset life. Technological advancement drives replacement cycles independently of 

physical degradation. Nvidia's GB200 (“Blackwell”) architecture, introduced in 

2024, provides 4-5x faster inference performance than the H100 architecture 

introduced just two years earlier (Nvidia 2024). When competitors deploy hardware 

with substantially superior performance characteristics, older chips become 

economically obsolete even if physically functional. 

The economics of technological obsolescence are straightforward. Consider inference 

workloads where cost per token determines competitiveness. Running inference on 

three-year-old H100 chips costs approximately 5x more per token than on 

current-generation GB200 chips due to differences in computational efficiency, 

power consumption, and throughput. For price-sensitive applications, older 

hardware becomes economically uncompetitive regardless of physical condition. 

Improvement Trajectory: The pace of improvement shows no signs of slowing. 

Each generation of AI-specific chips has delivered 2-4x improvements in 

performance per watt, with similar gains in performance per dollar (Khan et al. 

2024). This improvement trajectory makes multi-year depreciation assumptions 

economically questionable. A chip depreciated over six years reaches only one-third 

of its nominal life before becoming economically obsolete due to technological 

progress. 

3.2 Accounting Treatment in Practice 

Current accounting practice for AI infrastructure diverges sharply from technical 

evidence. Major technology companies report depreciation periods of five to six 

years for computing equipment in their 10-K filings (Microsoft 2024; Amazon 2024; 

Meta 2024). These periods reflect general IT asset depreciation conventions 
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developed for traditional enterprise computing rather than the specific 

characteristics of AI workloads and specialized hardware. 

Representative Examples from 10-K Filings: 

●​ Microsoft: Computer equipment depreciated over 4-6 years 

●​ Amazon: Computer and network equipment depreciated over 5 years 

●​ Meta: Network equipment and servers depreciated over 5 years 

●​ Google: Computer equipment depreciated over 4 years 

These depreciation periods were established for general-purpose servers and 

networking equipment with different operational characteristics than AI-specific 

hardware. Traditional servers operate at moderate utilization rates with mixed 

workloads. AI chips run at maximum capacity continuously on thermally intensive 

workloads. The physical and economic characteristics differ fundamentally, yet 

accounting treatment remains unchanged. 

3.3 Magnitude of the Capital Subsidy 

We can estimate the annual magnitude of the capital subsidy through 

straightforward calculation. McKinsey analysis indicates that approximately 60% of 

AI infrastructure spending addresses computing hardware (chips, servers, memory), 

25% covers power and cooling infrastructure, and 15% funds physical construction 

(McKinsey & Company 2024). For analytical clarity, assume 50% of total 

infrastructure spending addresses computing hardware with true three-year useful 

life, while remaining spending covers longer-lived assets. 

Calculation for Representative Coalition Member: 

Consider a firm investing $100 billion annually in AI infrastructure: 

●​ Computing hardware spending: $50 billion 

●​ True economic depreciation (3-year life): $50B ÷ 3 = $16.7 billion per year 

●​ Accounting depreciation (6-year life): $50B ÷ 6 = $8.3 billion per year 

●​ Annual subsidy: $8.3 billion 

This represents the difference between what the firm reports as depreciation 

expense and what it actually faces in replacement costs to maintain equivalent 

computational capacity. The $8.3 billion annual subsidy accumulates in reported 

earnings, making the business appear substantially more profitable than 

underlying economics warrant. 
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Aggregate Industry Impact: 

Scaled across major AI infrastructure investors spending approximately $300 

billion in 2025: 

●​ Annual aggregate subsidy: $25 billion 

●​ Three-year cumulative subsidy: $75 billion 

Over the critical market formation period (years 1-3), the cumulative capital 

subsidy approaches $75 billion across the industry. 

3.4 Financial Analyst Recognition 

Investment analysts have begun recognizing this mismatch. Barclays equity 

research published revised earnings forecasts for major AI infrastructure investors, 

cutting 2025-2027 estimates by up to 10% to account for more realistic depreciation 

assumptions (Barclays Capital 2024). The adjustments reflect concern that current 

profitability metrics overstate sustainable economics. 

Other analysts have published similar adjustments. Goldman Sachs equity research 

noted in July 2024 that “AI infrastructure depreciation assumptions may prove 

optimistic given the pace of technological change” and adjusted discounted cash flow 

models accordingly (Goldman Sachs 2024). These analytical adjustments suggest 

sophisticated market participants recognize the asset life mismatch, even though 

companies continue using extended depreciation periods in actual reporting. 

However, these analytical adjustments have not yet translated into changes in 

actual accounting practice, regulatory scrutiny, or public discussion of competitive 

implications. The capital subsidy continues to enable strategies that appear 

sustainable in reported financials but may not be sustainable at true replacement 

costs. 

4. The Revenue Sustainability Gap 

4.1 The Bain Analysis: An $800 Billion Annual Shortfall 

In September 2025, Bain & Company published an analysis estimating that AI 

firms will face an annual revenue shortfall of approximately $800 billion in 2030 to 

fund their capital expenses (Bain & Company 2025). What Bain calls an “AI 

revenue gap” emerges from comparing projected capital expenditures to the revenue 

that current and projected AI applications can generate. 
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Bain's methodology examines: 

●​ Projected AI infrastructure capital expenditures in 2030: ~$250-300 billion 

annually 

●​ Required return on invested capital: typical tech industry returns of 15-20% 

●​ Current AI application revenue projections: insufficient to fund capital costs 

at required returns 

The gap of approximately $800 billion annually represents the difference between 

what AI applications would need to generate to justify current investment levels 

and what Bain projects they will actually generate based on current adoption 

trajectories and pricing. 

This analysis suggests the AI infrastructure buildout faces a fundamental economic 

sustainability problem even before considering whether current accounting 

practices accurately reflect replacement costs. 

4.2 Incorporating Realistic Depreciation: A $1.5 Trillion Gap 

Bain's analysis uses companies’ reported capital expenditures and depreciation as 

inputs. If depreciation periods systematically understate true replacement costs, 

then the revenue gap is actually larger than Bain estimates. 

Adjusting the Bain Calculation: 

If we recalculate the revenue requirements incorporating realistic three-year useful 

life for computing hardware rather than reported five-to-six-year depreciation: 

●​ Bain's estimated annual CapEx in 2030: $250-300 billion 

●​ Adjustment for realistic depreciation on computing hardware (50% of 

spending): 

○​ Additional replacement cost: ~$40-50 billion annually 

●​ True annual capital requirements: $290-350 billion 

●​ Required revenue at 15-20% ROIC: $1,740-2,333 billion annually 

●​ Projected AI application revenue (Bain estimate): ~$200-300 billion 

●​ Adjusted revenue gap: $1.4-2.1 trillion annually 

Using the midpoint, the revenue gap expands from approximately $800 billion 

(Bain's estimate) to over $1.5 trillion when realistic asset life is incorporated. 

4.3 Implications for Market Structure Formation 
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The expanded revenue gap has critical implications for understanding competitive 

dynamics: 

First, the industry faces a sustainability challenge independent of the capital 

subsidy. Even with favorable accounting treatment, AI infrastructure economics 

appear problematic. This suggests the current buildout may not be sustainable at 

any depreciation assumption. 

Second, the capital subsidy makes the sustainability problem worse by understating 

true costs. Companies and investors making decisions based on reported 

profitability are systematically underestimating the capital requirements for 

sustaining operations. 

Third, and most importantly for competition analysis, the combination of 

unsustainable economics and accounting subsidy creates a distinctive strategic 

dynamic. Incumbent coalitions can establish application-layer dominance during 

the market formation window even though the underlying economics don't work. By 

the time economic reality becomes visible, customer relationships are locked in. 

Consider the strategic calculation for an incumbent coalition: 

Option A: Acknowledge that economics don’t work at realistic depreciation, scale 

back investment, lose application-layer market formation race. 

Option B: Deploy capital aggressively using capital subsidy to appear viable, 

establish application-layer dominance, bet that lock-in will create value even if 

infrastructure economics prove unsustainable. 

Option B dominates strategically because application-layer lock-in has value 

independent of infrastructure profitability. Microsoft benefits from Azure ecosystem 

expansion even if OpenAI's infrastructure economics ultimately don't work. Amazon 

benefits from AWS integration even if Anthropic's costs exceed revenues. The 

application-layer value persists even if model-layer or infrastructure-layer 

economics fail. 

4.4 The “Extend and Pretend” Dynamic 

The combination of capital subsidy and revenue gap creates what we term an 

“extend and pretend” dynamic: 
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Extend: Use favorable depreciation to extend the apparent viability of 

infrastructure investment beyond what realistic accounting would support. 

Pretend: Maintain the appearance of sustainable profitability while building 

application-layer lock-in, betting that customer relationships will prove valuable 

even when infrastructure economics are revealed to be unsustainable. 

This is not necessarily intentional deception. Companies may genuinely believe that 

revenue will eventually catch up to capital costs, or that technological 

improvements will resolve the economics. But the effect is the same: market 

structure forms based on economics that may prove unsustainable once true 

replacement costs become visible. 

The competition policy concern is that by the time economic reality becomes 

undeniable, application-layer lock-in will make competitive correction impossible. 

5. Coalition Structure and Subsidy Flow to Application Layer 

5.1 Market Organization Around Vertically-Integrated Coalitions 

The AI market has organized around vertically-integrated coalitions rather than a 

competitive marketplace of independent firms. This structure reflects the 

complementary investments required across infrastructure and model development 

layers, but it also creates pathways for subsidies to flow from infrastructure 

accounting to application-layer competition. 

The Major Coalitions: 

Microsoft-OpenAI Coalition: 

●​ Microsoft invested ~$13 billion in OpenAI while providing exclusive Azure 

infrastructure access 

●​ Microsoft sells “Azure OpenAI Service” with deep enterprise integration 

●​ Microsoft benefits economically from OpenAI's success through Azure 

consumption and ecosystem expansion 

●​ OpenAI's application-layer API sales drive Azure adoption 

Amazon-Anthropic Coalition: 

●​ Amazon invested ~$4 billion in Anthropic with AWS Bedrock integration 

●​ Anthropic runs primarily on AWS infrastructure 
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●​ AWS benefits from Anthropic’s customer acquisitions through infrastructure 

consumption 

●​ Application-layer API sales through Bedrock drive AWS ecosystem growth 

Google Integrated Coalition: 

●​ Google owns both infrastructure (Google Cloud) and model development 

(DeepMind, Gemini) 

●​ Vertical integration allows direct coordination of infrastructure and model 

strategies 

●​ Application-layer integration across Google Workspace and Cloud services 

●​ More integrated structure than partnerships but same economic logic 

Meta: 

●​ Owns infrastructure and develops models (Llama series) but focuses on 

internal applications 

●​ Uses AI to enhance core advertising and social networking businesses 

●​ Releases open-weight models to shape ecosystem without competing directly 

for enterprise API revenue 

●​ Application-layer value captured through improved engagement and ad 

targeting rather than API sales 

These coalitions reflect deeper integration than traditional supplier-customer 

relationships. Infrastructure economics directly enables application-layer 

competitive positioning through favorable pricing, capacity prioritization, joint 

product development, and coordinated go-to-market strategies. 

5.2 How the Subsidy Flows: From Infrastructure Accounting to 

Application-Layer Pricing 

The capital subsidy enables a multi-step flow of competitive advantage from 

infrastructure accounting to application-layer market positioning: 

Step 1: Infrastructure Layer Subsidy Creation 

Hyperscalers (Microsoft, Amazon, Google) report computing equipment depreciation 

over 5-6 years while facing 3-year replacement cycles. This creates apparent 

profitability that: 

●​ Improves reported earnings and attracts capital at favorable terms 
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●​ Makes infrastructure investments appear sustainable 

●​ Creates “room” for aggressive pricing while showing profits 

Step 2: Favorable Transfer Pricing to Model Developers 

The infrastructure subsidy enables hyperscalers to offer model developer partners 

(OpenAI, Anthropic) infrastructure access on terms more favorable than standalone 

cloud providers could match: 

●​ Below-market infrastructure pricing for coalition partners 

●​ Capacity prioritization during shortage periods 

●​ Joint development of optimized infrastructure-model integration 

●​ Revenue sharing arrangements that benefit from ecosystem expansion 

Step 3: Aggressive Application-Layer Pricing 

Model developers with access to subsidized infrastructure can price 

application-layer APIs more aggressively than would be sustainable at true market 

rates: 

●​ Lower per-token pricing to win enterprise customers 

●​ Aggressive customer acquisition spending 

●​ Capacity expansion that appears financially viable 

●​ Multi-year contracts at prices that lock in customers 

Step 4: Application-Layer Lock-In 

Enterprise customers integrating OpenAI or Anthropic models become embedded in 

the coalition's technology stack: 

●​ API integration requires months of engineering work 

●​ Prompt engineering and evaluation frameworks are model-specific 

●​ Compliance and security certifications are built around specific stacks 

●​ Multi-year contracts create financial switching costs 

●​ Organizational workflows and training are developed around particular 

providers 

Step 5: Ecosystem Value Capture 

Once application-layer customers are locked in, hyperscalers capture value through: 

●​ Increased Azure/AWS consumption as customers expand AI usage 
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●​ Adoption of adjacent cloud services (storage, databases, security) 

●​ Platform fees and integration services 

●​ Data lock-in as customer information accumulates in coalition systems 

The subsidy thus flows from infrastructure accounting through favorable coalition 

pricing to aggressive application-layer competition, ultimately establishing 

customer relationships that create value independent of whether infrastructure 

economics are sustainable. 

5.3 The Microsoft-OpenAI Example in Detail 

Consider Microsoft’s strategic calculation. Microsoft’s Azure AI infrastructure 

investments, when depreciated over six years rather than realistic three years, 

create apparent profitability of approximately $6-7 billion annually (using our 

earlier calculation scaled to Microsoft's investment level). 

This apparent profitability enables several strategic moves: 

Favorable OpenAI Infrastructure Pricing: Microsoft can offer OpenAI 

infrastructure access at below-market rates while maintaining the appearance of 

profitable Azure operations. The difference between true replacement costs ($13.3B 

annually) and reported depreciation ($6.7B annually) creates room for aggressive 

pricing to OpenAI without showing losses in Azure’s reported results. 

OpenA’'s Application-Layer Pricing Flexibility: With access to below-market 

infrastructure, OpenAI can price APIs more aggressively than competitors paying 

market rates for infrastructure. OpenAI’s pricing appears sustainable in OpenAI’s 

economics (infrastructure is artificially cheap from OpenAI’s perspective) even 

though it wouldn’t be sustainable if infrastructure were priced at true replacement 

cost. 

Enterprise Customer Acquisition: OpenAI’s aggressive API pricing wins 

enterprise customers who integrate OpenAI models deeply into their operations. 

The initial pricing advantage (enabled by the subsidy) creates customer 

relationships that persist even after pricing adjusts to market levels, because 

switching costs prevent customers from migrating once integrated. 

Azure Ecosystem Expansion: Every enterprise customer integrating OpenAI’s 

models through Azure OpenAI Service becomes more deeply embedded in the Azure 

ecosystem. These customers expand their use of Azure storage, Azure databases, 

Azure security services, Azure networking, and other Azure offerings. Microsoft 
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captures this expansion value independent of whether OpenAI’s infrastructure 

economics are sustainable. 

The Strategic Payoff: Microsoft’s investment creates value through 

application-layer lock-in even if OpenAI’s infrastructure economics ultimately don’t 

work at true replacement costs. The application-layer customer relationships, 

ecosystem expansion, and platform value persist independent of 

infrastructure-layer profitability. 

This is not a story about whether Microsoft or OpenAI are individually profitable at 

realistic depreciation. It’s a story about how the capital subsidy enables strategies 

to establish application-layer dominance during the critical formation window, with 

payoffs that persist even if infrastructure economics prove unsustainable. 

5.4 Why Application-Layer Competition Matters Most 

A critical insight is that application-layer competition determines the market 

structure that matters for enterprises and for innovation. As model development 

commoditizes, competitive differentiation increasingly comes from: 

●​ Ease of integration and developer experience 

●​ Enterprise compliance and security capabilities 

●​ Reliability and service level agreements 

●​ Ecosystem breadth (adjacent services and integrations) 

●​ Organizational trust and brand reputation 

These are application-layer characteristics, not model-layer capabilities. Two 

models with comparable accuracy become differentiated by which coalition's 

application-layer integration is more attractive to enterprises. 

The capital subsidy affects application-layer competition because it enables 

coalitions to establish customer relationships at prices that wouldn't be sustainable 

at true infrastructure costs. Once those relationships are established through deep 

integration, switching costs prevent customers from migrating even when: 

●​ True infrastructure costs become visible 

●​ Better models become available 

●​ More efficient infrastructure emerges 

●​ The revenue gap becomes undeniable 
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The lock-in is at the application layer, where enterprises have made complementary 

investments in integration, training, compliance, and workflow design. This lock-in 

persists independent of model-layer or infrastructure-layer economics. 

6. Competitive Scenarios and Application-Layer Lock-In 

The durability of competitive advantages created by the capital subsidy depends on 

technological trajectories and application-layer switching costs. We analyze three 

scenarios that span the range of possible outcomes, focusing on implications for 

application-layer competition. 

6.1 Scenario A: Training Keeps Scaling (Model Differentiation Persists) 

Technological Assumption: Frontier model capabilities continue to improve 

meaningfully with increased training compute. Scaling laws remain favorable. 

Model quality continues to differentiate providers at the application layer. 

Market Dynamics: In this scenario, training capacity matters more than inference 

efficiency. Model quality differentiates providers. Enterprise customers pay 

premium prices for frontier capabilities. Investment in massive training clusters 

creates lasting competitive advantages. 

Application-Layer Implications: Incumbent coalitions that built large-scale 

training capacity early possess significant advantages. Enterprise customers at the 

application layer choose providers based primarily on model quality. Integration 

depth reinforces advantages—customers become embedded with the coalition 

offering the best models. 

Subsidy Effects: When accounting catches up to operational reality (years 4-5), 

incumbent coalitions face profitability pressure but retain competitive advantages 

through superior model quality. New entrants with better unit economics struggle 

because the competitive game centers on model quality rather than cost. Capital 

requirements are enormous and ongoing. Whoever built scale first maintains 

advantages through continued investment in training capacity. Application-layer 

customers stay with their chosen coalition because switching would mean moving to 

inferior models. 

Assessment: This scenario appears increasingly implausible. Current evidence 

suggests model capabilities are plateauing or hitting diminishing returns to pure 

scale (Marcus and Davis 2024). The gap between frontier models and open-weight 
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alternatives has narrowed substantially. Model quality differentiation appears to be 

converging rather than expanding. Industry discussion has shifted from training 

scale to inference efficiency. Major model releases show incremental rather than 

transformative improvements. 

If this scenario somehow materializes, competition concerns focus on whether 

private capital can sustain the required investment indefinitely, or whether the 

industry requires policy support once true costs become visible. However, the 

application-layer competition question becomes less important because model 

quality determines outcomes regardless of integration depth. We proceed by 

analyzing the two more plausible scenarios where model capabilities plateau. 

6.2 Scenario B: Models Plateau, Application-Layer Lock-In Holds 

(Foreclosure) 

Technological Assumption: Model capabilities hit diminishing returns. Most 

models become “good enough” for enterprise applications. Inference efficiency and 

cost become important but not determinative. Open-source models match or 

approach proprietary model quality. Application-layer integration depth and 

switching costs determine competitive outcomes. 

Market Dynamics: Competition shifts entirely to the application layer. Model 

development commoditizes—multiple models offer comparable capabilities. 

Competition centers on integration quality, developer experience, enterprise 

security and compliance, ecosystem breadth, and reliability. 

However, incumbent coalitions that established customer relationships during the 

formation window retain advantages through mechanisms unrelated to model 

quality: 

●​ Deep enterprise integrations built during the buildup period when coalitions 

had pricing power 

●​ Multi-year contracts signed when model quality appeared differentiated 

●​ Compliance certifications and security frameworks built around specific 

coalition technology stacks 

●​ Organizational inertia: employees trained on specific platforms, workflows 

designed around particular APIs 

●​ Brand trust and reliability reputation built during market formation 

●​ Data accumulation: customer data stored in coalition ecosystems, creating 

additional switching costs 
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●​ Adjacent service adoption: enterprises use multiple services from coalition 

members, increasing switching costs further 

Application-Layer Lock-In Dynamics: This scenario creates the most 

concerning competitive dynamics. The capital subsidy enabled incumbent coalitions 

to establish application-layer market positions during years 1-3. By years 4-5, when 

true costs become visible and model capabilities have commoditized, switching costs 

prevent customers from moving even when: 

●​ New entrants offer better technology at lower cost 

●​ The revenue gap makes incumbent economics unsustainable 

●​ Better alternatives clearly exist 

The Google Search Parallel: The analogy to Google search illustrates the 

competitive concerns in this scenario. Google maintained search dominance through 

default placements and integration depth. The DOJ’s case demonstrated these 

mechanisms created durable advantages even when: 

●​ Switching appeared trivially easy (“one click away”) 

●​ Alternative search engines offered comparable quality 

●​ Users expressed no strong preference for Google in blind tests 

Default positions combined with interface integration and organizational habit 

proved sufficient to maintain dominance despite the apparent ease of switching. 

Application-Layer Switching Costs Are Higher: Switching costs in AI 

application markets are substantially higher than in consumer search: 

Consumer Search Enterprise AI Application Layer 

One-click switching Months of re-integration work 

No contracts Multi-year agreements with penalties 
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No organizational 

workflow 

Workflows built around specific APIs 

No compliance 

requirements 

Security certifications around specific stacks 

No training investment Employee training on specific platforms 

No data lock-in Accumulated data in provider systems 

No adjacent services Multiple coalition services create compound 

lock-in 

If Google could maintain dominance with low switching costs, application-layer 

lock-in in AI may prove far more durable when enterprises are deeply integrated 

into coalition technology stacks. 

Why Better Technology Doesn't Enable Entry: In Scenario B, new entrants 

may have: 

●​ More efficient infrastructure (newer chips, better designs) 

●​ Lower unit costs 

●​ Comparable or superior model quality 

●​ Better pricing 

Yet they cannot compete effectively because application-layer switching costs exceed 

the benefits of migration. An enterprise considering switching must weigh: 

Benefits: Lower per-token costs, possibly better performance, escape from coalition 

dependency 

Costs: Months of re-integration engineering, disruption to organizational 

workflows, multi-year contract penalties, re-certification for compliance, retraining 

employees, migrating accumulated data, losing integration with adjacent services 
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For most enterprises, the costs exceed benefits even when the alternative is clearly 

superior on technical or economic merits. 

Technology Deflation Reinforces Rather Than Undermines Lock-In  

An intuitive counterargument holds that rapid technological improvement should 

undermine incumbent advantages. Each generation of chips delivers better 

performance at lower cost, which should enable new entrants to compete on 

superior economics. 

However, technology deflation affects all market participants. The question is 

whether it helps entrants more than incumbents. When application-layer lock-in 

exists, technology improvement paradoxically reinforces incumbent advantages: 

Incumbents with locked-in customers: 

●​ Upgrade infrastructure through normal replacement cycles 

●​ Existing customers automatically benefit from improved capabilities and 

lower costs 

●​ No customer acquisition required 

●​ Lock-in strengthens as customers accumulate more data and deeper 

integration over time 

New entrants with better technology: 

●​ Have lower unit costs but must still acquire customers 

●​ Face application-layer switching costs that exceed economic benefits of 

migration 

●​ Must overcome integration depth even when offering clearly superior 

technology 

●​ Technology advantage is neutralized by switching costs 

The critical insight from the Google search case: technology deflation that should 

enable new entry actually reinforces incumbent advantages when lock-in is strong. 

Google's competitors could access the same technological improvements (better 

algorithms, faster servers, cheaper bandwidth), but default positions and 

integration depth meant technology improvements reinforced Google’s position 

rather than enabling entry. 

Assessment: Scenario B represents the most concerning competitive outcome. The 

capital subsidy enables incumbent coalitions to establish application-layer 
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dominance during the critical formation window. When model capabilities 

commoditize and true costs become visible, switching costs prevent competitive 

correction. 

Current evidence suggests this scenario is plausible: 

●​ Model capabilities appear to be plateauing 

●​ Open-weight models (Meta’s Llama, Mistral, etc.) are approaching 

proprietary model quality 

●​ Competition is shifting to inference efficiency and integration quality 

●​ Enterprise integration depth is substantial and growing 

If Scenario B materializes, the capital subsidy will have facilitated application-layer 

foreclosure—incumbent coalitions establish dominance during the formation 

window using subsidized economics, and lock-in prevents correction even when 

better alternatives emerge. 

6.3 Scenario C: Models Plateau, Low Switching Costs (Competitive Entry 

Remains Possible) 

Technological Assumption: Model capabilities plateau and commoditize. 

Importantly, application-layer switching costs prove lower than expected or are 

reduced through standardization and interoperability. 

Market Dynamics: APIs standardize across providers. Models reach comparable 

capability levels. Enterprises successfully demand interoperability. Integration 

depth matters less than anticipated because portability improves. Price and service 

quality become primary differentiators. 

How Switching Costs Could Be Lower Than Expected: Several developments 

could reduce application-layer switching costs: 

API Standardization: Industry converges on compatible API standards, allowing 

code portability. This is not implausible—the “OpenAI-compatible API” has become 

a de facto standard that many providers support. 

Abstraction Layers: Tools emerge that abstract away provider-specific details, 

allowing enterprises to switch backends without changing application code. 

Companies like LangChain and LlamaIndex provide some of this functionality. 
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Contractual Flexibility: As competition intensifies, providers may offer more 

flexible contract terms with lower switching penalties to attract customers. 

Enterprise Bargaining Power: Large enterprises with substantial purchasing 

power may demand interoperability and low switching costs as conditions for 

adoption. 

Regulatory Intervention: Competition authorities or sectoral regulators could 

mandate interoperability standards, directly reducing switching costs. 

Subsidy Effects: In this scenario, the capital subsidy enables wasteful 

overinvestment that temporarily distorts competition but does not create 

permanent application-layer foreclosure. Early investments by incumbents look 

wasteful in retrospect as enterprises can easily switch to better alternatives. 

New entrants can compete effectively on price and service quality, leveraging newer, 

more efficient infrastructure. The application-layer market remains competitive 

despite the formation-period subsidy because switching costs are manageable. 

Assessment: This is the optimistic scenario from a competition perspective. The 

capital subsidy creates inefficiency and shapes market structure temporarily, but 

competitive harm is not permanent because application-layer switching remains 

feasible. 

However, current evidence suggests this scenario is less likely than Scenario B: 

●​ Enterprise AI integration is deep and growing deeper 

●​ Contract structures include substantial penalties for switching 

●​ No strong industry movement toward standardization 

●​ Major providers have incentives to maximize lock-in rather than embrace 

portability 

●​ Regulatory intervention on interoperability has not materialized 

The burden of proof should be on those claiming switching costs will remain low. 

Historical evidence from enterprise software markets suggests deep integration 

creates persistent lock-in (Greenstein 1993). The Google search case demonstrates 

that even apparently trivial switching costs can prove decisive. 

6.4 Which Scenario Is Materializing? 
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Current evidence increasingly suggests we are heading toward Scenario B rather 

than Scenario A or C: 

Evidence Against Scenario A (Continued Training Scaling): 

●​ Model capability improvements have slowed 

●​ Diminishing returns to pure scale are visible 

●​ Open-weight models are closing the gap with proprietary models 

●​ Industry discussion has shifted from training scale to inference efficiency 

Evidence For Scenario B (Commoditization with Lock-In): 

●​ Model capabilities appear to be plateauing 

●​ Competition is shifting to application-layer differentiation 

●​ Enterprise integration depth is substantial and growing 

●​ Multi-year contracts with substantial penalties are common 

●​ No meaningful interoperability standards are emerging 

●​ Switching costs in enterprise AI are demonstrably high 

Evidence Against Scenario C (Low Switching Costs): 

●​ Deep enterprise integrations require months of engineering work 

●​ Compliance and security certifications are provider-specific 

●​ Multi-year contracts with penalties are standard 

●​ No strong industry movement toward standardization 

●​ Major providers resist portability 

●​ Regulatory intervention has not occurred 

The most likely trajectory is that model development commoditizes while 

application-layer lock-in proves durable, creating persistent competitive advantages 

for coalitions that established customer relationships during the formation 

window—precisely the outcome the capital subsidy enabled. 

7. Vendor Financing Amplifies Scenario B's Competitive Harm 

The competitive dynamics of Scenario B—where model capabilities plateau but 

application-layer lock-in proves durable—become even more concerning when we 

incorporate circular vendor financing into the analysis. Vendor financing amplifies 

the capital subsidy’s effects during the formation window, but more importantly, the 

short useful life of AI infrastructure means that even market corrections cannot 

enable competitive entry. 
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7.1 The Circular Financing Structure 

Major chip manufacturers, particularly Nvidia, have adopted strategies of making 

equity investments in companies that purchase their products, creating circular 

capital flows that amplify the market dynamics enabled by the capital subsidy. 

The CoreWeave-OpenAI-Nvidia Circle: The structure is most visible in 

relationships among Nvidia, CoreWeave, and OpenAI: 

●​ Nvidia owns approximately 7% of CoreWeave, a position worth ~$3 billion as 

of June 2025 (Bloomberg 2025) 

●​ CoreWeave has purchased at least 250,000 Nvidia GPUs, primarily H100s at 

~$30,000 each, totaling ~$7.5 billion in hardware purchases (The Information 

2025) 

●​ CoreWeave signed $22.4 billion in infrastructure contracts with OpenAI 

(Reuters 2025) 

●​ Nvidia participated in OpenAI's $6.6 billion funding round in October 2024 

(Wall Street Journal 2024) 

●​ Nvidia announced a $100 billion investment commitment in September 2025 

(Financial Times 2025) 

The capital flows in a loop: Nvidia invests in OpenAI → OpenAI commits to 

CoreWeave contracts → CoreWeave purchases Nvidia GPUs → Nvidia holds equity 

in CoreWeave. Each transaction appears as legitimate revenue, investment, or 

contract commitment depending on which company's financial statements are 

examined. 

Similar structures appear to underlie AMD’s recently announced multibillion-dollar 

deal with OpenAI, though details have not been fully disclosed (Reuters 2025). 

7.2 Learning from Telecom: The 2001 Vendor Financing Bust 

Circular vendor financing is not new. The telecommunications equipment market in 

the late 1990s demonstrated both the attraction and the risks of this structure 

(Partnoy 2003). 

The Telecom Pattern: During the late 1990s telecom boom, equipment makers 

provided substantial financing to enable customers to purchase their products: 

●​ Lucent committed $8.1 billion in vendor financing—approximately 24% of its 

annual revenue (SEC Filings, Lucent Technologies 2001) 
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●​ Nortel extended $3.1 billion in vendor financing (SEC Filings, Nortel 

Networks 2001) 

●​ Cisco promised $2.4 billion in vendor financing (SEC Filings, Cisco Systems 

2001) 

The strategy worked until it didn’t: 

●​ Equipment vendors lent money to cash-strapped telecom companies 

●​ Telecom companies used borrowed funds to purchase equipment 

●​ Vendors booked revenue from equipment sales 

●​ Stock prices rose based on revenue growth 

●​ Cycle repeated until customers couldn’t sustain operations 

When the bubble burst: 

●​ 47 competitive local exchange carriers went bankrupt between 2000 and 2003 

(FCC Data 2004) 

●​ Vendor financing became bad debt 

●​ Lucent wrote off $3.5 billion in customer loans (SEC Filings, Lucent 

Technologies 2002) 

●​ Equipment sales that appeared to represent genuine demand actually 

reflected artificial demand created by circular financing 

Today's Numbers Are Larger: Nvidia’s disclosed investments and financing 

commitments total approximately $110 billion against $165 billion in 

trailing-twelve-month revenue—representing 67% of revenue compared to Lucent’s 

24% at the telecom peak (Company Financial Statements 2025). 

The scale of circular financing in AI infrastructure substantially exceeds the 

telecom boom in both absolute and relative terms. 

7.3 Critical Difference: Asset Life Eliminates the “Second Chance” for 

Competition 

Two critical differences distinguish the AI infrastructure buildout from the telecom 

boom, with fundamentally different implications for competition policy. 

First: There are no allegations or findings of fraud in current AI vendor financing, 

whereas several telecom cases involved fraudulent accounting. The circular flows in 

AI infrastructure appear to represent legitimate commercial relationships rather 
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than attempts to manufacture artificial revenue. Nvidia's investments in customers 

may be genuine strategic bets rather than disguised subsidy mechanisms. 

Second and More Important: Asset lifespan fundamentally changes the 

competitive implications when buildouts prove excessive. This is the crucial insight 

for understanding why Scenario B is even more concerning than the Google search 

parallel initially suggests. 

In Telecommunications (1990s-2000s): 

●​ Fiber optic cables had useful lives measured in decades 

●​ Switching equipment remained functional for 10-20 years 

●​ When overbuilt telecom companies went bankrupt, new entrants could 

acquire infrastructure at fire-sale prices 

●​ Long asset life meant excess capacity created during the boom could be 

redeployed by new entrants during the correction 

●​ Competitive entry was actually enabled by the bust—new entrants got 

infrastructure cheaply and competed effectively 

In AI Infrastructure (2020s): 

●​ AI chips have three-year useful lives before technological obsolescence 

●​ By the time financial pressure emerges (years 3-5), technology has progressed 

2-3 generations 

●​ Three-year-old chips purchased at fire-sale prices cannot compete when 

incumbents deploy current-generation hardware with 4-5x better 

performance 

●​ Excess capacity from failed investments does not provide a competitive 

foundation for new entrants 

●​ Short asset life means the bust does not enable competitive entry 

Why This Matters for Application-Layer Competition: In telecom, the vendor 

financing bust actually improved competitive conditions. New entrants acquired 

infrastructure cheaply and competed effectively with incumbents. The bust was 

economically wasteful but competitively beneficial. 

In AI, even if circular financing unwinds and creates financial distress, this will not 

enable application-layer competitive entry for two reasons: 

First: Failed infrastructure has no competitive value due to short useful 

life. Three-year-old chips are economically obsolete when incumbents run 
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current-generation hardware. A new entrant acquiring stranded H100 chips in 2027 

cannot compete effectively when incumbent coalitions are running GB200 or 

next-generation hardware with 4-5x better performance characteristics. 

Second: Application-layer lock-in persists regardless of 

infrastructure-layer distress. Incumbent coalitions with locked-in customers will 

upgrade to current hardware through normal replacement cycles. Their 

application-layer advantages continue even if some infrastructure investments fail. 

Enterprise customers remain integrated with Microsoft-OpenAI or 

Amazon-Anthropic regardless of whether the underlying infrastructure investments 

prove economically sustainable. 

The short asset life means vendor financing unwinding does not create the “second 

chance” for competitive entry that occurred in telecommunications. This 

fundamentally changes the policy calculus and makes Scenario B’s competitive 

harm more severe and more permanent than historical analogies suggest. 

7.4 How Circular Financing Amplifies the Capital Subsidy 

Circular vendor financing interacts with the capital subsidy to amplify competitive 

distortions during the formation window: 

First: Obscuring true sustainability. Circular financing makes it difficult to 

assess the true financial sustainability of the buildout. When the same dollars flow 

through multiple entities as investment, revenue, and contracts, traditional 

financial analysis becomes challenging. This obscures the revenue gap and makes it 

harder for markets or regulators to identify problems early. 

Second: Reinforcing coalition structures. The circular structure reinforces 

coalition dynamics and application-layer competition. Companies with equity stakes 

in multiple layers of the infrastructure stack have aligned incentives to maintain 

the coalition structure rather than compete independently. This entrenchment 

makes application-layer competition less likely to emerge even if underlying 

economics deteriorate. 

Third: Fragility without competitive benefit. If financial pressure emerges, 

interconnectedness means distress could cascade through the circular structure 

quickly—but without creating competitive opportunities for application-layer entry 

due to short asset life. The system is fragile to shocks but failure does not improve 

competitive conditions. 
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Fourth: Accelerating the formation-window buildout. Circular financing 

enables larger-scale buildout than arm's-length transactions would support. 

Nvidia’s investments in customers effectively reduce the capital customers need to 

raise independently. This amplifies the formation-period advantage—incumbent 

coalitions can deploy capital faster and establish application-layer positions more 

quickly than if financing were entirely independent. 

The combination of vendor financing and capital subsidy thus creates a distinctive 

dynamic: rapid deployment of capital that establishes application-layer lock-in, 

based on circular financing that may prove unsustainable, with short asset life that 

prevents competitive correction even if the financing unwinds. Thus, Scenario B’s 

competitive foreclosure may prove permanent even if the financial structure 

collapses. 

8. Policy Proposals 

8.1 Current State of Competition Review 

Competition authorities in the United States and Europe are examining market 

concentration in AI, focusing on traditional antitrust metrics: market share, pricing 

power, exclusionary conduct, and merger effects. In 2024, the Federal Trade 

Commission launched inquiries into partnerships between hyperscalers and AI 

developers. The European Commission is examining potential foreclosure concerns 

under the Digital Markets Act (European Commission 2024). However, the 

competitive implications of accounting policy and vendor financing have not yet 

received extensive attention in competition proceedings. 

8.2 Enhanced Disclosure Requirements for Infrastructure Projects 

Our first policy proposal addresses information asymmetry. Any AI infrastructure 

project receiving government support—whether through direct funding, tax 

incentives, power grid access, or regulatory approval—should be required to 

disclose: 

1. Realistic Useful Life Assumptions: 

●​ Expected useful economic life for computing hardware based on technological 

obsolescence and physical degradation 

●​ Sensitivity analysis showing how capital requirements change under 

different useful life assumptions 
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●​ Comparison of accounting depreciation to expected replacement schedules 

2. Expected Replacement Costs: 

●​ Forward-looking estimates of annual replacement capital requirements 

●​ Analysis of how these costs change under different technology improvement 

trajectories 

●​ Total capital requirements to maintain operations over 5-10 year horizons 

3. Revenue Sustainability Analysis: 

●​ Projected revenue from AI applications needed to fund capital requirements 

●​ Analysis of revenue gap between current projections and capital costs 

●​ Scenario analysis under different adoption and pricing assumptions 

4. Partnership Economics: 

●​ Disclosure of how infrastructure costs flow from chip manufacturers to 

hyperscalers to model developers 

●​ Transfer pricing methodologies for coalition infrastructure access 

●​ Capacity allocation mechanisms and contractual revenue sharing 

arrangements 

●​ Terms of partnership agreements including exclusivity provisions 

5. Vendor Financing Relationships: 

●​ Equity positions held by equipment vendors in customers or partners 

●​ Lending arrangements and financing commitments 

●​ Contractual linkages between vendor investments and equipment 

procurement 

●​ Total magnitude of circular financing as percentage of revenue 

6. Application-Layer Integration and Lock-In: 

●​ Analysis of customer switching costs 

●​ Contract structures including length, penalties, and renewal terms 

●​ Description of integration depth and technical dependencies 

●​ Assessment of competitive implications at application layer 

Enhanced disclosure serves multiple functions. It enables regulators to assess 

competitive effects at the application layer more accurately. It allows investors to 

make more informed capital allocation decisions based on realistic economics. It 
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creates market pressure for more realistic accounting treatment through 

transparency. Most importantly, it makes visible the mechanisms by which 

application-layer competition is being shaped during the formation window. 

8.3 Interoperability Standards to Reduce Application-Layer Switching 

Costs 

Our second policy proposal directly addresses application-layer switching costs. 

Competition authorities should actively promote interoperability standards for: 

1. Model API Standardization: 

●​ Standardized interfaces allowing enterprises to switch between model 

providers without rewriting integration code 

●​ Technical challenges are manageable—generative AI APIs have relatively 

simple surface areas amenable to standardization 

●​ The “OpenAI-compatible API” has already emerged as a de facto standard; 

perhaps formalize and extend this 

●​ Ensure standards cover not just inference but also fine-tuning, evaluation, 

and monitoring 

2. Data Portability Requirements: 

●​ Clear requirements for exporting training data, fine-tuning datasets, and 

application data 

●​ Standardized formats to enable migration between providers 

●​ Reduction of data lock-in as a switching cost 

●​ Requirements for providers to offer export functionality 

3. Cloud Integration Framework Interoperability: 

●​ Standardized approaches to security, compliance, data residency, and 

operational procedures 

●​ Reduce the cost of migrating security certifications between providers 

●​ Enable compliance frameworks that work across coalition stacks 

●​ Allow enterprises to maintain security posture while switching providers 

The Google Search Remedy Analogy: The remedy in the Google search case 

focused substantially on reducing switching costs by limiting default placements 

and exclusive arrangements. The Court recognized that even apparently low 

switching costs (“one click”) could create durable competitive advantages. The 
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remedy sought to reduce lock-in mechanisms that prevented users from accessing 

alternatives. 

AI application-layer switching costs are substantially higher than consumer 

search—months of engineering work versus one click. This makes interoperability 

standards even more important in AI than default-placement restrictions were in 

search. 

Addressing Industry Resistance: Industry participants will likely resist 

standardization, arguing that: 

●​ It reduces innovation incentives by commoditizing interfaces 

●​ Technical differences make standardization impractical 

●​ Competitive differentiation requires proprietary approaches 

●​ Standardization is premature in a rapidly evolving market 

However, interoperability has proven achievable in previous technology markets 

(telecommunications, payment systems, internet protocols, email) without limiting 

innovation. The key is to standardize interfaces rather than implementations, 

preserving competitive differentiation while reducing switching costs. 

The argument that standardization is premature is weakest precisely because 

application-layer lock-in is forming now. Waiting for the market to mature means 

waiting until lock-in is already established—at which point intervention becomes 

much more difficult, as the ongoing Google search remedy demonstrates. 

9. Conclusion 

This paper has documented a significant mismatch between the economic useful life 

of AI infrastructure chips (1-3 years) and their accounting depreciation periods (5-6 

years), creating a “capital subsidy” worth tens of billions of dollars annually. This 

accounting treatment matters because it enables incumbent coalitions to pursue 

application-layer strategies during the critical market formation window that would 

appear unsustainable under realistic depreciation. 

The competitive implications concentrate at the application layer rather than model 

development. As model capabilities plateau and model development commoditizes, 

competition shifts to application-layer integration, customer relationships, and 

switching costs. The capital subsidy enables hyperscaler-model developer coalitions 

to establish application-layer dominance through aggressive pricing and rapid 
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capacity expansion that appears financially viable in reported earnings but may not 

be sustainable at true replacement costs. 

The industry faces a fundamental economic challenge even before considering 

accounting distortions. Bain & Company's analysis estimates an $800 billion annual 

revenue shortfall in 2030 to fund capital expenses. Incorporating realistic 

depreciation expands this gap to over $1.5 trillion—nearly double the sustainability 

challenge. The capital subsidy enables incumbent coalitions to pursue strategies 

during the formation window despite economics that may prove unsustainable, 

betting that application-layer lock-in will create value regardless of 

infrastructure-layer profitability. 

Three scenarios span possible competitive outcomes. Scenario A (continued training 

scaling) appears increasingly implausible as model capabilities plateau—we dismiss 

this scenario and focus on the two plausible futures where model development 

commoditizes. Scenario B (commoditization with durable application-layer lock-in) 

represents the most concerning outcome, where incumbent coalitions establish 

customer relationships during years 1-3 using subsidized economics, and by years 

4-5, when true costs become visible, application-layer switching costs prevent 

competitive correction even when better alternatives emerge. Scenario C 

(commoditization with low switching costs) represents the optimistic outcome where 

switching costs prove manageable and competition remains possible. 

Current evidence—deep enterprise integrations, multi-year contracts with 

penalties, absence of interoperability standards, and lessons from the Google search 

case—suggests Scenario B is more plausible than Scenario C. If Scenario B 

materializes, the capital subsidy will have enabled application-layer foreclosure 

that proves durable as in Google search, but with switching costs orders of 

magnitude higher than changing search engines. 

Circular vendor financing amplifies Scenario B’s competitive harm in a distinctive 

way. Unlike telecommunications, where long-lived assets could be redeployed by 

new entrants after failures, three-year useful life means excess capacity will not 

enable competitive entry even if financial distress emerges. The combination of 

vendor financing, capital subsidy, and short replacement cycles creates a system 

that is fragile to shocks but where failure does not improve competitive conditions. 

Market corrections that might have enabled competitive entry in previous 

technology booms cannot do so in AI infrastructure—making Scenario B's 

foreclosure potentially permanent even if the financial structure collapses. 
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We propose two policy interventions addressable through available regulatory 

authority. Enhanced disclosure requirements would create transparency about true 

economics, partnership structures, and application-layer lock-in mechanisms for 

any project receiving government support. Interoperability standards would reduce 

switching costs and enable competition based on merit rather than integration 

depth at the application layer. These interventions could be implemented through 

existing regulatory frameworks without requiring new legislation. 

The critical insight for competition policy is timing. Market structure at the 

application layer is being determined now during the formation window. The 

decisions being made—based on accounting assumptions that may overstate 

financial sustainability by a factor of two—are crystallizing the competitive 

landscape for artificial intelligence services. Once customer relationships are 

established and integration depth is achieved, competitive correction becomes 

substantially more difficult. 

The Google search remedy—now in its implementation phase after years of 

litigation—demonstrates how difficult unwinding lock-in becomes after market 

structure crystallizes. Application-layer integration in enterprise AI creates 

switching costs far exceeding consumer search engine selection. If intervention 

waits until application-layer lock-in is complete, remedies become much more 

challenging and less likely to succeed. 

Competition authorities face a window for intervention measured in years, not 

decades. The capital subsidy creates a distortion during market formation that may 

shape application-layer competitive outcomes permanently, independent of whether 

the underlying infrastructure investment economics prove sustainable at true 

replacement costs. The revenue gap suggests they will not. Circular vendor 

financing amplifies the formation-window advantage while eliminating the 

possibility of competitive correction through market failure. By the time economic 

reality becomes undeniable, the application-layer market structure may already be 

foreclosed. 
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