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We present a new model of competition and mergers between two-sided media platforms

with targeted advertising. The model includes familiar forces describing how platforms set ad

load given user-side and advertiser-side substitution patterns, but adds new insights around how

how user overlap and preference heterogeneity determine how competing platforms set ad load.

We apply the model to evaluate the proposed separation of Facebook and Instagram. Using

new data and new analyses of earlier randomized experiments with Facebook and Instagram

users, we provide model-free evidence on user overlap, diversion ratios, price elasticity, and other

parameters, and then estimate a structural model of this two sided market. Preliminary counter-

factual simulations suggest that separating Facebook and Instagram would transfer significant

surplus from platforms to advertisers, impose a small welfare cost on users, and decrease total

welfare by a small amount. The total welfare gain would be much larger if separated platforms

could avoid inefficient ad duplication across multi-homing users.
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It is hard to overstate the importance of quality and price for users and advertisers in digital

markets. According to one estimate, there are now 5 billion internet users worldwide, averaging 6.6

hours online each day (Kemp 2023). More than half of the $680 billion yearly global advertising

budget is spent online (Dentsu 2022). Given this importance, there is significant concern about

digital platforms’ market power and how this might affect outcomes for users and advertisers (Stigler

Center 2019; CMA 2020; Scott Morton and Dinielli 2020).

Facebook and Instagram are a key example of this debate. In 2020, the U.S. Federal Trade

Commission (FTC) sued Meta for antitrust violations, proposing that Instagram and WhatsApp

be divested to restore competition for the benefit of both users and advertisers. The FTC and Meta

disagreed over market definition, the extent of Meta’s market power, and how divesting Instagram

might affect user experiences, advertising prices, and other outcomes. The FTC argued that Face-

book and Instagram have very high market share in the “personal social networking” market, which

includes Snapchat but excludes TikTok or other communication or entertainment services. Meta

(2021) counterargued that “The FTC’s fictional market ignores the competitive reality: Facebook

competes vigorously with TikTok, iMessage, Twitter, Snapchat, LinkedIn, YouTube, and countless

others to help people share, connect, communicate or simply be entertained.”

In this paper, we consider an important subset of these questions. In theory, how do mergers

(or separations) of media platforms affect advertising loads and total surplus? Empirically, how

do users substitute between Facebook, Instagram, and other apps? Quantitatively, how might ad

loads and prices change if Facebook and Instagram were separated, and how would those changes

affect total surplus?

We begin with a model of social media as a two-sided market. While the model nicely applies

to the Facebook-Instagram case, it is generally useful for understanding platform competition with

targeted advertising. Heterogeneous users and advertisers continuously allocate their time and

ad spending between two platforms (e.g., Facebook and Instagram) and a non-strategic outside

option. The platforms set advertising load, accounting for how higher ad load decreases both user

time-on-platform and equilibrium ad prices.

The model includes familiar forces from Rochet and Tirole (2003) and Anderson and Coate

(2005). When the two platforms are managed jointly, the monopolist doesn’t internalize how ads

reduce user surplus and increase advertiser surplus, so profit-maximizing ad load could be either

above or below the social optimum depending on users’ ad elasticity and advertisers’ demand

elasticity. When the two platforms are separated, the ad loads can increase or decrease depending

on user and advertiser diversion ratios.

Our model is novel in capturing targeted advertising. Ad markets clear at the user level,

with user-specific prices. When the platforms are separated, there is inefficient duplication: if the

separated platforms don’t share data, when both users and advertisers multi-home, the platforms

may inefficiently impress a given user with extra ads from a given advertiser. Such a model can easily

become intractable, and prior work such as Athey, Calvano, and Gans (2018) has required strong

assumptions and can deliver results such as discontinuous reaction functions and mixed strategy
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equilibria that may not reflect actual market conditions. A key insight is that two assumptions

substantially simplify the model: (i) ad click-through rates are independent across advertisers, and

(ii) click-through rates are uniformly distributed across consumers.

Under these assumptions, we derive closed form expressions for the effect of duplication and use

them to characterize pure strategy equilibria with novel but intuitive comparative statics. Specifi-

cally, if separated platforms cannot avoid inefficient duplication, separating platforms increases ad

load by more when there is more user overlap across platforms. This is because (i) overlap increases

advertiser losses from duplication, which softens advertiser demand; and (ii) there is a “business

stealing” strategic incentive to reduce marginal overlap by expanding ad load to additional users

whom the other platform is less likely to impress.

The model highlights that merging or separating digital platforms such as Facebook and In-

stagram has a theoretically ambiguous effect: it could either increase or decrease total surplus.

However, these effects depend on a specific set of observable empirical statistics: user responses

to higher prices and ad loads, the user diversion ratio between the two platforms, the extent of

multi-homing and multi-homers’ joint distribution of preferences to use the two platforms, as well

as advertisers’ price response.

We then apply the model to predict how separating Facebook and Instagram would affect those

platforms’ incentives to set ad load, and the effects that would have on total surplus. In the empirical

part of the paper, we first provide descriptive empirical evidence on these parameters. We report

results from the 2020 Facebook and Instagram Election Study (“FIES”) implemented by Allcott

et al. (2024). FIES includes two randomized experiments with nationally representative samples

of 23,415 Facebook users and 21,249 Instagram users, respectively, in which randomly selected

treatment groups were paid to deactivate Facebook or Instagram for six weeks. If the FTC’s

market definition were correct, users would primarily substitute between Facebook, Instagram, and

Snapchat. In reality, there only very limited diversion between Facebook and Instagram, implying

that (at least in the short run), joint ownership does not generate much additional market power

on the user side.

We then analyze data from the Digital Addiction (“DA”) experiment implemented by Allcott,

Gentzkow, and Song (2022). DA is a randomized experiment with 2,053 Facebook and/or Instagram

users in which a randomly selected treatment group was paid to reduce time spent on (but not

necessarily deactivate) Facebook, Instagram, and other social media apps for three weeks. In the

DA data, only about 12 percent of Instagram users are single-homers (i.e., don’t use Facebook),

while 32 percent of Facebook users are single-homers (i.e., don’t use Instagram). This implies

that there will be an asymmetry in the two platforms’ incentives to increase ad load in the model.

Among multi-homers, there is a wide dispersion in time-on-platform, which dampens platforms’

business-stealing incentive in the model.

We import the Goli et al. (2018) estimate of the elasticity of user time-on-platform with respect

to ad load, which suggests that users’ time-on-platform is very inelastic to ads. The DA data

suggest that users are very price elastic: 41–50 percent of Facebook and Instagram use is worth less
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than $2.50 per hour to users. These two results suggest that ad loads could change substantially

in modeled counterfactual equilibria and that this would not significantly affect consumer surplus.

We use these empirical moments to estimate the model’s structural parameters. We impose a

quadratic functional form on users’ utility from time on the two platforms, and we identify the

ad disutility, price responses, platform substitutability, and distribution of utility intercepts from

the observed ad and price elasticities, diversion ratios, and time use distribution. We identify

advertisers’ aggregate price elasticity from the platform’s first-order condition, in the spirit of

how Berry, Levinsohn, and Pakes (1995) identify marginal costs from a Nash-Bertrand pricing

assumption. Intuitively, if Facebook and Instagram set lower ad load (and thus higher prices), this

is rationalized by inferring more inelastic advertising demand.

We use the estimated model to simulate the effects of separating Facebook and Instagram. In

our current model, separation increases ad load on both platforms, reducing prices and time use.

Ad load increases by more on Instagram: since a larger share of users are multi-homers, Instagram

faces stronger incentives to increase ad load relative to Facebook to reduce the chance that marginal

impressions are duplicated. The potential increase in advertiser surplus from higher ad load is

attenuated by inefficiencies due to wasted impressions. Total surplus falls by 0.9 percent, since

higher advertiser surplus is offset by lower consumer and platform surplus. Combined advertiser and

consumer surplus rises by 1.4 percent. Overall, separation mostly transfers surplus from platforms

to advertisers.

There are several important caveats. Perhaps most importantly, we consider only one margin

on which competition affects welfare: equilibrium ad loads and prices in an otherwise static market.

The Federal Trade Commission (2020), Scott Morton and Dinielli (2020), and others point to other

potential effects of separating Facebook and Instagram (or other large digital media platforms),

including entry of new businesses that would attract customers through social media ads or entry of

new competing media platforms. Moreover, we do not consider how competition between Facebook

and Instagram might induce the two apps to improve quality or change data sharing and privacy

practices, or how Meta can currently combine data from both Facebook and Instagram to improve

ad targeting and attribution. If Instagram were separated without access to Facebook’s targeting

and attribution technologies, ad targeting would likely become much worse, harming both users

and advertisers.

Second, even within the context of our model, our empirical calibrations are imperfect. For

example, our user diversion ratios are identified from a sample that selected into the experiment

during the 2020 election, and the diversion ratios might well be different over a period longer than

six weeks. Our estimate of the advertiser price response from the platform’s first-order condition

requires structural assumptions such as constant and exogenous profits per click and no change in

user overlap with other media platforms.

Our work builds on several important literatures. First, we extend theoretical literatures on

platform competition in general (Rochet and Tirole 2003; Armstrong 2006; Rochet and Tirole 2006;

Weyl 2010; Rysman 2009) and specifically in media markets (Anderson and Coate 2005; Chen 2024;
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Bergemann and Bonatti 2011; Ambrus, Calvano, and Reisinger 2016; Anderson and De Palma 2012;

Prat and Valletti 2022; Anderson and Peitz 2023). Second, we extend work studying the effects

of multi-homing in advertising markets, including duplication and incremental pricing (Ambrus,

Calvano, and Reisinger 2016; Zubanov 2021; Anderson, Foros, and Kind 2018; Athey, Calvano,

and Gans 2018; Gentzkow et al. 2024; Prat and Valletti 2022; Anderson and Peitz 2023). Third,

we build on the work studying media industry mergers and separations (Berry and Waldfogel

2001; Benzell and Collis 2022; Chandra and Collard-Wexler 2009; Fan 2013; Gentzkow, Shapiro,

and Sinkinson 2014; Jeziorski 2014). Fourth, we extend prior work estimating diversion ratios

from product availability experiments in social media (Collis and Eggers 2022; Allcott et al. 2020;

Mosquera et al. 2020; Aridor 2022; Allcott et al. 2024) and other markets (Goldfarb 2006; Conlon

and Mortimer 2013, 2021; Conlon, Mortimer, and Sarkis 2021).

While some of our empirical analyses use data from the FIES and DA experiments we previously

implemented, we think of this paper as a material additional contribution studying different topics.

The FIES papers were focused on the effects of Facebook and Instagram use on political outcomes

around the 2020 election, while the DA paper was focused on estimating users’ self-control problems

and habit formation.

Sections 1–6, respectively, present the model, model-free empirical evidence, structural estima-

tion, counterfactuals, and conclusion.

1 Model

1.1 Setup

There are two digital media platforms indexed by j. The platforms choose ad load αj (in ads per

unit time on platform) to maximize profits. Bold typeface indicates vectors—e.g., α is the vector

of ad loads on each platform. We assume that platforms have zero marginal cost, so (variable)

profit equals ad revenue R (α).

There is a measure-N continuum of users indexed by i. Users choose time on each platform Tij

and numeraire consumption ni to maximize utility Ui (T i, ni;α). We assume that Ui is quasilinear

in ni, so changes in Ui correspond to changes in consumer surplus. We assume that users’ utility

or disutility from ad load accounts for expected consumer surplus from any purchases of advertised

products, so we do not need to separately account for consumer surplus in advertisers’ product

markets.

There is a measure-A continuum of advertisers indexed by a. Each advertiser earns exogenous

profit per ad click πa. For example, πa might equal a user’s purchase probability (conditional on

clicking on an ad) times the product’s markup. The model is isomorphic if we redefine “clicks” as

some other advertising result (such as impressions or purchases) or redefine “advertisers” as separate

ad campaigns run by the same firm. Advertisers choose the quantity of clicks qa to purchase from

the platforms to maximize profits Πa (qa;πa).

The targeted advertising technology is as follows. An ad “campaign” involves m impressions of
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advertiser a’s ads to each targeted user, where m is the platform’s prediction of the optimal number

of impressions for user i.1 Define ωia as platform’s prediction of user i’s probability of clicking on

a given ad impression during advertiser a’s first ad campaign, which we call the “click-through

rate.” The click-through rate ωia is the same on both platforms: ads are equally effective if seen on

either platform, and both platforms have the same targeting technology (even if separated). The

click-through rate after the first campaign is (1− ζi) ·ωia, where ζi is the percent decrease in click-

through rate on impressions from the first to the second campaign. This captures the diminishing

returns to additional impressions.

As described below, there is a separate ad market for each user, with equilibrium price per

impression pi. The predicted cost per click is thus pi/ωia, and the predicted profit per impression

is thus ωiaπa and (1− ζi) ·ωiaπa for impressions in the first and second campaign, respectively. For

user i, define Hi(x) ∈ [0, 1] as the cumulative density function (CDF) of ωiaπa across advertisers.

The platform’s contract offer to advertisers is to serve ads to the Ua (q) users with the lowest

cost per click and charge total price Ca (q) =
∑

i∈Ua(q)
mpi. Advertisers know Ca (q) when choosing

q.

We impose three assumptions that substantially simplify the analysis.

Assumption 1. Independent click-through rates: ωia⊥ωia′, ∀ (a, a′); ωia⊥Tij , ∀(a, j); and

ωia ⊥ ζi,∀a.

Assumption 2. Identical uniform profits per impression: Hi(x) = η−1x− η0, ∀i.

Assumption 1 states that click-through rates are independent across advertisers and independent

of time-on-platform. This rules out the possibility that some users are more or less valuable on

average across advertisers. This assumption could be weakened by modeling distinct user types,

such as high- or low-income people. Assumptions 1 and 2 together imply that a given change in α

has the same effect on all Ca(q), and Assumption 2 facilitates straightforward demand aggregation

across individual users.

We impose the regularity condition that 1 − ζi ≤ pmi /(η · (1 + η0)), where pmi is the merged

equilibrium price where platforms are constrained to serve at most one campaign to user i from

advertiser a. The regularity condition implies that predicted profit per impression for the second

campaign is weakly below the market clearing price were the platform to never show duplicated

impressions, since η · (1 + η0) is the maximum profit per impression given Assumption 2. Thus, in

the merged equilibrium, the platform never shows multiple campaigns from the same advertiser to

a user, since it is weakly more profitable to show the first campaign from the marginal advertiser.

1Assuming constant impressions is isomorphic to assuming heterogeneous impressions mi with mi ⊥ ωiaπa, ∀i, a
withm ≡ Ei[mi]. We also show in Appendix A.1 that equilibrium prices are identical under heterogeneousmi ⊥ ωiaπa

and an alternative assumption where mi is increasing in profits per impression and decreasing in prices, with a specific
functional form.
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1.2 Profits and Market Clearing Conditions

We now derive platform revenue as a function of ad load in two equilibria: (i) when the two

platforms are merged, and (ii) when the two platforms are separated. In the merged equilibrium,

the firm maximizes the sum of profits across the two platforms. Due to the assumption that

1 − ζi ≤ pmi /(η · (1 + η0)), the firm does not duplicate a given ad campaign a to a given user i on

both platforms. In the separated equilibrium, the platforms independently maximize profits and

cannot coordinate to avoid duplicating impressions of the same campaign to a given user.

1.2.1 Merged Equilibrium

Advertisers choose the quantity of clicks to purchase from the merged firm. Advertiser profits equal

product market profits net of advertising costs:

Πm
a (q) = πa · q − Ca (q) . (1)

Maximizing profits gives

πa = C ′
a (qa) . (2)

In words, advertisers purchase ads until the marginal cost per click equals profit per click.

Ad markets clear at the user level:

supply︷ ︸︸ ︷
α · T i(α) =

demand︷ ︸︸ ︷∑
a

m · 1 [i ∈ Ua (qa)] =
∑
a

m · 1 [pi ≤ πaωia] = Am · (1 −Hi (pi)) . (3)

Rearranging equation (3) gives equilibrium price

pi = H−1
i

(
1 − α · T i(α)

Am

)
, (4)

where H−1
i is the inverse CDF. We assume that η and η0 are such that we always have an interior

equilibrium. This equation shows that equilibrium prices are increasing in ad demand (the number

of advertisers A and campaign size m) and decreasing in ad supply (ad load α and time on platform

T i).

The merged platform revenue is

Rm(α) =
∑
i

α · T i(α) · pi. (5)

1.2.2 Separated Equilibrium

In the separated equilibrium, advertisers choose the number of clicks qj to purchase from each of

the two platforms at total price Caj (qj). Define Oa (q1, q2) as the “overlap” function: the number
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of duplicated clicks purchased, which is weakly increasing in the number of clicks purchased on

each platform. Advertiser profits account for that overlap:

Πs
a (q1, q2) = πa · (q1 + q2 −Oa) + π (q1, q2;Oa) − Ca1 (q1) − Ca2 (q2) . (6)

where π is the profits from duplicated impressions, given the overlap function. Define O′
aj as the

derivative of Oa with respect to qj . Maximizing profits gives

πa ·
(
1 −O′

aj

)
+ π′

aj (qa1, qa2;Oa) = C ′
aj (qaj) . (7)

In words, advertisers purchase ads until the overlap-adjusted marginal cost per click equals profit per

click. The first term reflects how an increase in qj impacts profits from non-duplicated impressions.

The second term equals the derivative of π with respect to qj . In equilibrium, π′
aj = (1−ζj)·πa ·O′

aj ,

where ζj is the time-use weighed average of ζi on platform j for multi-homing users with positive

time use on both platforms, and πa · (1− ζj) is the marginal profit per purchased click for a user i′,

who is the marginal user impressed by advertiser a on platform j.2 The left-hand side of equation

(7) can therefore be written as πa ·
(

1 − ζjO
′
aj

)
. Note that since ζj is a time-use weighted average

of ζi among multi-homers, it is a function of α.

The user-level market clearing condition is analogous to the merged case, except that markets

now clear separately on each platform j:

supply︷ ︸︸ ︷
αj · Tij(α) =

demand︷ ︸︸ ︷∑
a

m · 1
[
pij ≤ πaωia ·

(
1 − ζj ·O′

aj

)]
= Am ·

(
1 −Hi

(
pij

1 − ζj ·O′
aj

))
(8)

Rearranging equation (3) gives equilibrium price

pij = H−1
i

(
1 − αjTij(α)

Am

)
·
(
1 − ζj ·O′

aj

)
. (9)

Each platform’s revenue is

Rs
j (αj ;α−j) =

∑
i

ad supply︷ ︸︸ ︷
αj · Tij (α) ·pij . (10)

There are two sources of strategic interaction between platforms in the separated equilibrium.

First, platforms compete on the user side due to time use complementarity or substitutability.

Second, on the advertiser side, platform revenue is decreasing in O′
aj , the expected increase in

duplicated clicks from an additional click purchased on j. The equilibrium value of O′
aj depends

2Since the separated platform believes the click-through rate for duplicated users to be ωia, the purchase of a
click for a duplicated user involves ω−1

ia impressions. Since the profit per impression for duplicated users is ωiaπa,
the profit per purchased click is ωiaπa/ωia = πa · (1− ζi). Taking the conditional expectation for users with overlap
gives the expression in the text.
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on the rival platform’s ad load.

Suppose that Assumption 1 holds and advertiser demand (qa1, qa2) satisfies the first-order con-

ditions in equation (7). Let Uj be the set of users on platform j, and Nj = |Uj | indicate their

number. We show in Appendix A.2 that the marginal overlap function evaluated at equilibrium ad

demand is

O′
aj (qa1, qa2) =

∑
i∈Uj

1[αjTij(α) ≤ α−jTi,−j(α)]

Nj
∈ [0, 1] (11)

Equation (11) shows that marginal overlap depends on two dimensions of time use. First, marginal

overlap is increasing in the fraction of users on platform j who multi-home (spend time on both

platforms). If user i is a single-homer on i, then Ti,−j(α) = 0, and the indicator in the numerator

is zero for that user.

Second, marginal overlap is decreasing as ad load increases relative to platform −j. To un-

derstand this point, consider two extremes. Suppose that for all multi-homers, Tij > Ti,−j , and

αj = α−j . Market clearing prices must be lower on platform j for all i, implying that the marginal

click-through rate ωia is lower as well. This implies the marginal user impressed by an increase in

quantity on platform j will not be served on platform −j, so no clicks are wasted. Suppose instead

the opposite: Tij < Ti,−j for all i who multi-home. Market clearing prices will be higher on platform

j for all i. The marginal user impressed on j will already be served on −j, so all additional clicks

purchased are wasted.

Put differently, higher ad load on a platform decreases ad prices, allowing advertisers to expand

their reach beyond the set of users that are more likely to also be impressed on a competing

platform. Advertisers recognize that the marginal user impressed on a platform with greater reach

is less likely to be impressed elsewhere. This increases demand.

1.3 Special Case: Homogeneous Users, Constant Click-Through Rate, and No

Duplication

While specialized to digital media markets, our model includes familiar economic forces to existing

models with two-sided platforms engaged in quantity setting games, such as Anderson and Coate

(2005). To illustrate these forces, Appendix A.3 examines the social optimum, merged, and sepa-

rated competitive equilibrium in a special case where identical users (Ui = U,T i = T , ni = n) have

the same click-through rate on all ads (ωia = ωa). We assume in the separated equilibrium, the two

platforms coordinate to avoid the duplication effect, and that ζj is sufficiently high so that neither

platform serves more than one campaign from an advertiser to a user.

The special case shows how the two-sided nature of media market platforms complicates stan-

dard antitrust welfare analysis. First, ad load in the merged competitive equilibrium may be higher

or lower than the social optimum. The key disortion in the merged equilibrium is that the user

time use is not directly priced, and hence enters nowhere in the platform problem. The socially

optimal ad load equates the marginal welfare gain from advertisers with the marginal welfare loss
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for consumers. By contrast, the merged platform equates the increase in marginal revenue from

higher ad load with the infra-marginal loss in revenue from lower prices. While the increase in

marginal revenue equals advertiser surplus, the infra-marginal loss in revenue from lower prices

may be higher or lower than marginal consumer surplus.

Second, ad load in the separated equilibrium may be higher or lower than in the merged equi-

librium. Because merged equilibrium welfare may be higher or lower than is socially optimal,

separation has an ambiguous effect on welfare. The effect of separation on ad load depends on

user-side diversion. In particular, separated equilibrium ad load tends to be lower when platforms

are substitutes, i.e.
∂T−j

∂αj
> 0. This is because separation causes platforms to more aggressively

compete on the user side, which restrains their increase in ad load.

Therefore, user diversion
∂T−j

∂αj
is a potentially important driver of the welfare effects of sepa-

ration due to two-sided forces in our model. Our empirical approach places emphasis on credibly

estimating this parameter.

1.4 Advertiser Side in Isolation

We now focus on the advertiser side of the market, assuming that time on platform T i is exogenous

but not necessarily homogeneous. We highlight two features of the model. First, rather than

generic diversion ratios, merged and separated equilibrium ad load depends on novel user overlap

statistics. Second, separating platforms impacts ad load both by changing strategic incentives and

also the available advertising technology. For clarity, the results in this subsection assume ζj = 1,

so that duplicated impressions are fully wasted. See Appendix A.5 for derivations. We first discuss

general results before illustrating them using numerical examples in Section 1.4.3.

1.4.1 Merged Equilibrium

The merged platform chooses αe,m to maximize revenue given in Equation (5). The solution is

αe,m
j = −

∑
i α−j · Ti,−j · ∂pi

∂αj
+ Tij · pi∑

i Tij · ∂pi
∂αj

, j = 1, 2. (12)

where
∂pi
∂αj

= − (Am · hi(pi(α)))−1 · Tij and hi = H ′
i.

Monopolist ad load equalizes the marginal increase in revenue due to a direct increase in ad load

and the marginal revenue decrease on infra-marginal impressions on both platforms. For intuition,

suppose that all users are single-homers and have homogeneous time use if positive, so that Tij ∈
{0, Tj} and min(Ti1, Ti2) = 0 ∀i. Applying Assumptions 1 and 2, equation (46) simplifies to

αjTj = 1
2Am · (1 + η0), the standard solution for a monopolist maximizing against a linear demand

curve. In that case, the platform sets ad load independently on each platform.

Two forces shape ad load in our model relative to the standard monopolist incentive to restrict

supply to increase price. First, the monopolist internalizes the effect of choice of ad load on platform
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αj on revenue from ads shown on platform −j. In particular, greater overlap implies lower ad load.

Second, the monopolist considers the variance of time use across users. Since prices are set at the

user level but ad load is not, time use variance impacts how revenue changes when ad load shifts.

1.4.2 Separated Equilibrium

In the separated equilibrium, platforms solve:

αe,s
j = arg max

αj

∑
i∈Uj

αj · Tij · pij (13)

Equilibrium ad load is therefore:

αe,s
j = −

∑
i∈Uj

Tij · pij∑
i∈Uj

Tij · ∂pij
∂αj

, j = 1, 2. (14)

First, suppose that the platforms can coordinate to avoid duplication. In this case, pij = pi,

given by equation (4), and ∂pi
∂αj

< 0 is as in equation (12). This coincides with the merged platform

solution if all users single-home. As the fraction of multi-homers rises, equation (12) indicates

that merged equilibrium ad load rises relative to equation (14). Hence, separation reduces ad load

by more as overlap increases. Intuitively, overlap increases the Cournot externality imposed by

platform j increasing ad load on platform −j, which increases ad load in the separated equilibrium

relative to the merged equilibrium.

Next, suppose platforms cannot coordinate to avoid duplication. In this case, pij is given by

equation (9). Furthermore,

∂pij
∂αj

= −
(
1 −O′

aj(α
e,s)
)
· (Am · hi(pij))−1 · Tij −

pij(
1 −O′

aj(α
e,s
) ∂O′

aj(α
e,s)

∂αj
. (15)

Without an integrated ad market, there is no Cournot externality mediated by overlap. However,

the loss from duplication plays a similar role, where greater user overlap implies a greater increase

in ad load in the separated equilibrium. For intuition, suppose that all users were single-homers,

so O′
aj and its first derivative equal zero. Ad load would coincide with the merged equilibrium in

equation (12). Positive overlap reduces ad load in the merged equilibrium and increases ad load

in the separated equilibrium. The latter is because overlap reduces revenue from infra-marginal

impressions (reflected in the first term in
∂pij
∂αj

) and because platforms have a strategic incentive to

increase ad load to reduce overlap (reflected in
∂O′

aj

∂αj
in the second term in

∂pij
∂αj

). We call the first

term the “inframarginal effect,” and we call the second term the “business stealing effect,” where
∂O′

aj

∂αj
≤ 0 from the definition of O′

aj in equation (11).

Business stealing occurs because platforms with higher ad load have lower prices, which signals

to advertisers that marginal clicks purchased are shown to users with lower CTRs. Since CTRs

are user-specific across platforms, the marginal user impressed on the low-price platform is not

11



impressed on the high-priced platform. Therefore, duplication from overlap reduces ad demand by

less on the platform with higher ad load, all else equal.

The business stealing effect is also different from a standard Cournot externality because it can

generate strategic complementarities across platforms, where an increase in ad load on j encourages

−j to increase ad load as well. When a rival’s ad load increases, demand falls because marginal

impressions are more likely to be duplicates. This increases ad load through the direct effect

and strategic channels. By contrast, in our model ad load choices with no duplication are always

strategic substitutes. We formalize this comparison in Proposition 1 in Appendix A.5, and illustrate

it numerically in the next section.

Lastly, the possibility of duplicated impressions means the separated equilibrium has a social

inefficiency relative to the merged equilibrium.

1.4.3 Numerical Examples

We explore how the above forces impact ad load in the separated relative to combined equilibrium

through several numerical examples. We parameterize the distribution of time use with a measure

O of multi-homers with Tmi ∼ N
(
1
2 ,ΣT

)
, and a measure Nj of single-homers Tsi = 1. Let

µj ≡ O/Nj , the fraction of multi-homers. Unless otherwise specified, we set ζj = m = 1 and the

remaining model parameters to their estimated value from Section 4.

Example 1: Partial overlap (with no duplication). We first focus on how partial user overlap

impacts the magnitude of the Cournot externality when separated platforms can coordinate to avoid

duplication. We set ΣT = 0, so that multi-homers split one unit of time equally across platforms.

The merged equilibrium solution is standard linear Cournot: αe,m
j = 1

2Am·(1+η0). In separated

equilibrium, reaction functions are:

αe,s,i
j (α−j) =

2 − µj

(4 − 3µj)
Am · (1 + η0) −

1

2

µj

(4 − 3µj)
α−j (16)

When there is no overlap (µj = 0), each separated platform behaves as a monopolist. As overlap

increases, separated platforms respond more to their rival’s actions, as they have a greater impact

on revenue, and interalize less the price impact of increased ad load. Appendix Section A.5.1

derives a closed-form expression for separated equilibrium ad load, and shows that the percent

change relative to the merged equilibrium only depends on overlap statistics and is independent of

ad demand parameters.

Figure 1, panel (a) plots reaction functions and equilibria in to show these forces concretely.

Facebook reaction functions to Instagram ad load are plotted horizontally, and Instagram reaction

functions to Facebook ad load are plotted vertically. Equilibria are plotted wth black dots where

the reaction functions intersect. Black lines plot vertical reaction functions when µj = 0, because

platforms ignore their rival’s actions. The blue and orange solid lines plot reaction functions

when µj = 1 for both platforms, indicating a 40% increase in ad load relative to the monopolist
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equilibrium. The dashed lines plot reaction functions given empirically-observed µj , with µIG >

µFB. Since Instagram has more overlap than Facebook, it will internalize less of the impact of

increased ad load on equilibrium prices, and hence increase ad load by much more than Facebook.

Example 2: Duplication (with no partial overlap). We next consider a separated equi-

librium where platforms cannot coordinate to avoid duplication. To focus on the role of du-

plication, we assume all users are multi-homers with heterogeneous time use parameterized by

ΣT = diag
(
σ2, σ2

)
. Heterogeneous time use ensures that the marginal overlap function is contin-

uous and differentiable.

Reaction functions no longer have a closed form, but are given by:

αe,s,i
j (α−j) = arg max

αj

(
1 −O′

aj (αj , α−j)
)
·η

(∑
i

αjTij ·
(

1 + η0 −
αjTij

Am

))
, (17)

where O′
aj(αj , α−j) = Pr(αjTij ≤ α−jTi,−j),

and where we substitute for pij in equation (13) and apply the no-overlap assumption. Rival ad

load α−j only enters the expression through marginal overlap O′
aj . This makes clear the infra-

marginal effect (shifting levels) and business stealing effect (shifting strategic incentives) generated

by duplication. Moreover, the variance of time use, controlled by σ2, will alter separated plat-

form incentives. When σ2 is very low, platforms can precisely affect marginal overlap and user

prices through changes in ad load, amplifying strategic differences relative to the merged equilib-

rium. When σ2 is very high, changes in ad load have little impact on marginal overlap, dampening

differences relative to the merged equilibrium.

Figure 1, panel (b) illustrates these points. The solid blue and orange lines plot Facebook and

Instagram reaction functions when σ2 is relatively low. Ad load increases significantly. Because

platforms have fine control over marginal overlap, the business stealing effect is strong, making

choice of ad load a strategic complement. The dashed lines plot reaction functions when σ2 is high.

Ad load still shifts out due to the direct effect. However, platforms have much less control over

marginal overlap through choice of ad load, severely dampening the business stealing effect.

Example 3: Duplication and partial overlap together. Finally, we consider the impact

of duplication and partial overlap jointly. Reaction functions are the same as in equation (17),

except that O′
aj(·) = µj Pr(αjTij ≤ α−jTi,−j). This means the impact of duplication is attenuated

if overlap µj is low on a given platform.

Figure 1, panel (c) plots the resulting reaction functions, where all reaction functions use the

empirical overlap µj on Facebook and Instagram. First, partial overlap (µj < 1) dampens the

impact of duplication, since each platform has a user population for whom strategic incentives

do not change relative to the merged equilibrium. Second, the business stealing motive appears

stronger for Instagram than Facebook. This is because Instagram has greater overlap, magnifying

the returns to business stealing. Finally, higher time use variance again dampens the business
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stealing effect, although to a lesser degree as it is already dampened by overlap.

Summary. In an environment with exogenous but heterogeneous time use, separating platforms

increases ad load by more when user overlap across platforms is greater. If separated platforms

can coordinate to avoid duplication, this is because user overlap increases the externality of lower

prices imposed by a platform on their rival from an increase in ad load. If separated platforms

cannot avoid duplication, this is because: (i) overlap increases anticipated advertiser losses from

duplication, which softens advertiser demand, and (ii) a “business stealing” strategic incentive to

expand ad load to the population not already impressed to reduce marginal overlap.

1.5 Full Equilibrium

We now consider the full equilibrium with endogenous and heterogeneous time use under different

ownership structures. The formal analysis, presented in Appendix A.6, combines expressions in

Sections 1.3 and 1.4. We maintain the assumption that ζ = 0 throughout. We summarize the

results below.

The social planner chooses ad load to equalize the marginal aggregate user welfare cost of ads

and the marginal aggregate advertiser welfare benefit of ads. Relative to the planner problem in

Section 1.3, the planner calculates aggregate costs and benefits by summing across heterogeneous

individuals.

The merged platform increases ad load on each platform to the point that the revenue gain

from increased aggregate marginal impressions equals the lost revenue on aggregate infra-marginal

impressions. As in Section 1.3, the revenue gain from increased aggregate marginal impressions is

higher when time use lost due to higher ad load on j is diverted to higher time use on platform

−j, which also contributes to revenue. Unlike in Section 1.3, the merged platform calculates these

aggregates by summing across heterogeneous individuals. Furthermore, ad load may be higher

or lower than the social optimum because time use is unpriced, and lost revenue on aggregate

infra-marginal impressions may not equal the marginal aggregate user welfare cost of ads.

In a separated equilibrium without duplication, platforms set ad load ignoring: (i) lost revenue

on infra-marginal impressions on the other platform (a Cournot externality); and (ii) time use

diversion to the other platform. As in Section 1.3, (i) increases ad load relative to the merged

equilibrium, (ii) decreases it if platforms are substitutes, and the net effect is ambiguous. However,

as in Section 1.4.2, these differences only apply for multi-homers with positive time use on both

platforms. Therefore, the importance of each effect depends on user overlap. Ad load may be higher

or lower than in the merged equilibrium, and therefore closer or further from the social optimum.

In a separated equilibrium with duplication, platforms again ignore time use diversion to the

other platform. Because the market for ads is not integrated, there is no Cournot externality.

Rather, duplication incentivizes higher ad load relative to the merged equilibrium, due to the

inframarginal effect and business stealing effects described in Section 1.4.2. Therefore, ad load may

be higher or lower in the separated equilibrium than the merged equilibrium.
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However, because the separated equilibrium has inefficiently duplicated ad impressions, compar-

ing ad load relative to the social planner benchmark is not sufficient to make welfare judgements.

Even if ad load were identical to the social planner’s choice, duplicated impressions in the separated

equilibrium would lower advertiser surplus and hence overall welfare relative to the planner case.

We work through these issues explicitly in Section 5.

The full model contains many positive and normative ambiguities about the effects of an anti-

trust policy that separates jointly-owned platforms. We now parameterize the model and take it

to data to resolve those ambiguities.

2 Experimental Designs

We use a series of randomized experiments to generate empirical facts relevant to the model from

Section 1 that we will later use to estimate the model parameters. We reanalyze two existing

experiments to provide new evidence on three key user-side factors: the joint distribution of time-

on-platform, the diversion ratio, and the price elasticity. We run a new experiment to estimate a

central advertiser-side parameter relevant for counterfactuals: the change in click-through rates due

to multiple impressions of the same advertisement. This section describes experimental designs,

with results presented in Section 3.

2.1 User-side: Time use overlap, diversion ratio, and price elasticity

Facebook and Instagram Election Study (“FIES”). The first randomized experiment we

consider is the 2020 Facebook and Instagram Election Study (Allcott et al. 2024), henceforth

“FIES.” We present results from Allcott et al. (2024) that have been disclosed through legal and

privacy review and are relevant for the present paper. Allcott et al. (2024) use data from two

randomized experiments, one that paid Facebook users to deactivate Facebook, and another that

paid Instagram users to deactivate Instagram. We say that Facebook and Instagram, respectively,

are the “focal platform” in each experiment.

From August 31 to September 12, 2020, Meta placed survey invitations at the top of the news

feeds for a stratified random sample of 10,597,957 Facebook users and 2,633,497 Instagram users.

Consenting participants were paid to complete a series of surveys and were also invited to a passive

tracking sample where their mobile app use and desktop web browser use would be recorded. The

final samples we use comprise 23,415 Facebook users and 21,249 Instagram users who were willing

to deactivate the focal platform for a payment of $25 per week, who completed the first two surveys,

and whose survey responses could be linked to Meta’s on-platform data. Approximately 25 percent

of participants also consented to passive tracking.

A randomly selected Control group (comprising 73 percent of the sample) was paid $25 if they

did not log into their focal platform for the one week between September 23 and the end of the day

on September 29. A randomly selected Deactivation group (comprising the remaining 27 percent

of the sample) was paid $150 if they did not log into their focal platform for the six weeks between
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September 23, 2020, and the end of the day on November 3 (U.S. election day). The “treatment

period” is the additional five weeks from September 30–November 3 when the Deactivation group

was being paid to avoid logging in, while the Control group was not.

For each participant, Allcott et al. (2024) observe normalized daily time on Facebook and

Instagram for each day of the baseline period through the end of 2020, as recorded by Meta. For

each participant in the passive tracking sample, Allcott et al. (2024) observe daily time spent on

each mobile app and daily count of impressions on each web domain. Allcott et al. (2024) also

observe demographics, including income, education, age, gender, and race/ethnicity. Allcott et al.

(2024) weight the final samples using weights constructed to make the samples representative of U.S.

focal platform users (with baseline use over 15 minutes per day) on race, political party, education,

and measures of baseline account activity, including number of friends (on Facebook) or accounts

followed (on Instagram), number of days logged into the focal platform during the baseline period,

and terciles of time spent on the focal platform during the baseline period.

Digital Addiction (“DA”). The second randomized experiment we study is Digital Addiction

(Allcott, Gentzkow, and Song 2022), henceforth “DA”. From March 22 to April 8, 2020, the authors

recruited participants using Facebook and Instagram ads that were shown to 3,271,165 unique users.

Consenting participants were paid to complete a series of surveys and install an app called Phone

Dashboard that recorded their mobile app use. The final sample we use comprises 2,053 people

were were randomized and informed about their treatment conditions on May 3, 2020.

Beginning May 3, a randomly selected Limit group was given access to functionality in Phone

Dashboard that allowed them to set daily screen time limits for each app on their phone. A

randomly selected Bonus group was paid to reduce their use of six apps (Facebook, Instagram,

Twitter, Snapchat, web browsers, and YouTube, henceforth “FITSBY”) over the 20 days beginning

May 25. Specifically, users were told that they would be paid a “Screen Time Bonus” of $50 for

every hour they reduced their average FITSBY screen time over the 20-day period, relative to a

benchmark set above their baseline use. For example, a user with a benchmark of 3 hours per day

who had a daily average FITSBY screen time of 2.5 hours over the 20-day period would earn $25.

The Bonus treatment amounts to a price of $2.50 per hour of screen time on the FITSBY apps

during the 20-day period.

For each participant, we observe daily time spent on each mobile app from the beginning of the

baseline period on April 12, 2020, through the end of the study on July 26, 2020. We do not apply

sample weights to these data.

2.2 Advertiser-side: Loss from duplication.

We ran a new experiment on Meta to estimate how duplicated impressions impact click-through

rates. This parameter is important for counterfactuals in our model, and plays a central role in

many existing theoretical models of ad markets (e.g. Anderson et al., 2012; Athey, Calvano, and

Gans, 2018; Gentzkow et al., 2024). Despite this, there are no (to our knowledge) direct estimates of

16



this parameter in the literature. 3We describe the experimental design here and present preliminary

pilot results in Appendix B.1.

An ideal experiment would randomly vary the number of ads a user sees for a random sample

of Meta advertising campaigns. We cannot implement this experiment outside of Meta, but Meta’s

functionalities allow us to approximate it as an outside advertiser. Meta’s Ads Manager allows

advertisers to retarget audiences initially impressed by another campaign, a feature we used to

identify fixed user audiences. We then the varied whether a given audience saw one or two identical

campaigns, and use this variation to estimate the change in clicks per ad impression.

With this approach, it is important to run a representative sample of ads, at representative

ad intensity, so as to achieve typical ad performance. To do so, we designed ad campaigns for 15

advertisements spanning five product categories. We chose product categories to reflect the top

categories by ad spending from the 2024 SensorTower Digital Market Index (SensorTower 2024).4

We created separate Facebook pages that run ads recommending “product picks” within each

category. We picked products to advertise based on the top product by the top-three advertisers

within each category. We piloted one ad for the consumer packaged goods category.

Meta’s functionality allows us to restrict targeting to a fixed user audience and estimate the

number of unique users impressed by multiple campaigns. However, it does not guarantee that all

users in an audience are actually impressed, nor does it give us precise control over ad frequency.

This complicates estimation of average click-through rates, because for users more likely to click,

Meta is more likely show ads and run ads at a higher frequency. It also makes it challenging to

estimate the loss from duplication – unless all users are impressed by both campaigns, we cannot

ensure that all impressions are duplicated. We overcome these challenges by experimentally varying

ad budget, which traces out the relationship between the click-through rate and the fraction of the

audience impressed, and whether the ad objective is to maximize clicks or maximize reach, which

provides variation in frequency to trace out its relationship to the click-through rate. We use these

relationships to control for different fractions of the audience impressed and different frequencies

across treatment and control conditions.

For each ad, we ran an initial set of ads to identify five similarly-sized, non-overlapping audiences

of US users aged 18-65. The following week, we randomly assigned these audiences to one of five

treatment conditions. Across treatment conditions, we varied: (i) the daily budget to estimate the

effect of reach on performance; (ii) the ad objective, either to maximize clicks or to maximize reach,

to estimate the effect of frequency on performance; and (iii) the number of campaigns targeting

the audience to estimate duplication loss. See Appendix B.1 for details on product selection, ad

creatives, and implementation of the pilot.

3There are some structural estimates outside of digital competition settings. For example, Gentzkow, Shapiro, and
Sinkinson (2014) estimate diminishing returns in historical newspaper markets based on the correlation between the
political affiliation of incumbent newspapers and political affiliation of entrants, with the logic that high diminishing
returns will discourage entry among ideologically-similar papers.

4The top five categories by spending are shopping, consumer packaged goods, media and entertainment, health
and wellness, and financial services. Because Meta restricts financial services advertisements, we replace it with food
and dining services, the sixth-highest category by spending.
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3 Empirical Facts

3.1 Time Use and Overlap

As described in Section 1, an initial key statistic that determines the market effects of mergers

or separations is the extent of overlap across users. Figure 2 is a heat map describing the joint

distribution of Facebook and Instagram time use in the DA baseline data. The histograms at

the top and right present the marginal distributions of Facebook and Instagram use, respectively.

About 9 percent of Instagram users are single-homers (i.e., use zero Facebook), while the remaining

91 percent are multi-homers. About 30 percent of Facebook users are single-homers (i.e., use zero

Instagram), while the remaining 70 percent are multi-homers.

3.2 Diversion Ratio

A second key statistic for merger analysis is the user-side diversion ratio between the two platforms.

The FIES experiment allows Allcott et al. (2024) to estimate that directly, by estimating the effect of

Facebook deactivation on Instagram use as well as the effect of Instagram deactivation on Facebook

use. Below, we reproduce results previously reported in (Allcott et al., 2024).

Figure 3 presents background evidence, documenting Facebook and Instagram use in the re-

spective Facebook and Instagram samples. The dark grey period (from September 23–29) indicates

the week when both Deactivation and Control groups were being paid to deactivate. The light

grey period (from September 30–November 3) indicates the five week treatment period when only

the Deactivation group was being paid to deactivate. During the treatment period, about 15–20

percent of the Deactivation group would use the focal platform on any given day, compared to

about 90 percent of the group.

We would like to estimate the effect of fully deactivating platform j on use of other app j′.

However, Figure 3 shows that the experiment involved imperfect compliance: not all participants

in the Deactivation group stayed fully deactivated. Allcott et al. (2024) thus analyze the experiment

as a randomized encouragement design, using an instrumental variables estimator. Define Tij,d as

person i’s average daily use of platform j during the deactivation treatment period, and define T̂C
j,d

as the the Control group average. Allcott et al. (2024) define a deactivation compliance variable

D̃i :=
(
T̂j,d − Tij,d

)
/T̂j,d. D̃i = 1 for participants who never use j during the treatment period,

and D̃i = 0 for participants with usage equal to the Control group average.

Define Di as a deactivation group indicator, and define Tij′,0 and Tij′,d as use of j′ during the

baseline and treatment periods, respectively. Allcott et al. (2024) estimate

Tij′,d = τDj
j′ D̃ij + βTij′,0 + ϵij , (18)

instrumenting for D̃ij with the deactivation group estimator Di. The first stage effect on D̃i

measures the extent of compliance, and τDj
j′ is the local average treatment effect of fully deactivating

j on use of j′, for people induced to deactivate by the $150 payment.
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Panels (a) and (b) of Figure 4 present the local average treatment effects of Facebook and

Instagram deactivation on use of other mobile apps, as measured in the passive tracking data.

The Facebook and Instagram Control group participants in the passive tracking sample spent

about 45 and 18 minutes per day, respectively, on the Facebook and Instagram mobile apps during

the treatment period. Panel (a) shows that deactivating Facebook increases Instagram use by

about 2 minutes per day, implying a diversion ratio of τ̂DI ≈ 2/45 ≈ 0.044. Panel (b) shows that

deactivating Instagram has no statistically significant effect on Facebook use, implying a diversion

ratio of τ̂DF ≈ 0. The estimated effects on other social apps are relatively large (around 7–8 minutes

per day).

3.3 Price Response

A third key statistic for evaluating effects on consumer surplus is the user price response. While we

do not consider counterfactuals with positive prices, the price response is required to quantify the

effects of ad load changes on consumer surplus. We identify the price response by estimating the

effect of the DA experiment Screen Time Bonus on Facebook and Instagram time use. For these

analyses, we use only the Limit Control group, thereby excluding people who had access to screen

time limit functionality.

Figure 5 presents daily average Facebook and Instagram use for the Bonus and Control groups

(within the Limit Control group). The grey period (from May 25–June 13) indicates the 20-day

period when the Bonus group was being paid to reduce social media use. During that time, the

Control group Facebook and Instagram averages are 54 and 14 minutes per day, and the Bonus

group averages are noticeably lower.

Figure 6 estimates the average effect of the Bonus for each week of the experiment. The

estimates show that Facebook use dropped by about 22 minutes per day, or 41 percent relative to

the Control group. Instagram use dropped by about 7 minutes per day, or 50 percent relative to

Control.

To formally estimate the effect of the Bonus on Facebook and Instagram use, define Bi as a

Bonus group indicator, and define Tij,0 and Tij,b as use of j during the baseline and bonus periods,

respectively. We estimate

Tij,d = τBj D̃ij + βTij,0 + ϵij . (19)

τBj is the effect of the Bonus on use of j.

These are strikingly large price responses—they imply that 41–50 percent of Facebook and

Instagram use is worth less than $2.50 per hour to users. This means that any reductions in time

on platform or increases in ad load will translate to relatively small consumer surplus losses.
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4 Structural Estimation

We now impose additional structure on the model and estimate the parameters using a minimum

distance estimator that minimizes the differences between empirical moments and model predic-

tions. The user-side empirical results from Section 3 help identify the user-side demand parameters.

We infer advertiser-side parameters from the modeled ad load first-order condition from Section

1.5.

4.1 Setup

Define yi as income and ni as numeraire good consumption, both in units of $/day. Define b as the

price per minute of time spent on social media; b = 0 normally, but b = bB in the DA experiment

Bonus condition. We assume that users maximize quadratic utility

Ui (T i) =
∑
j

[
(ξij − γjαj)Tij − σjT

2
ij/2

]
+ ρTi1Ti2︸ ︷︷ ︸

quadratic utility from time on platform

+ ni︸︷︷︸
numeraire

, (20)

subject to budget constraint yi = ni + b
∑

j Tij .

We assume that αj , σj , γj , and ρ are homogeneous across consumers, so all time use heterogene-

ity arises from differences in ξij . Under this functional form, the average and marginal disutility

for ads are the same, so there is no Spence (1975) quality distortion.

Maximizing utility gives users’ choice of time use on platform j as a function of time on the

other platform j′:

Tij =
ξij − γjαj − b + ρTij′

σj
. (21)

Platform j single-homers exogenously have Tij′ = 0. Let k ∈ {s,m} index single-homer and

multi-homer user types, and let µj be the share of j’s users that are multi-homers. Define ξkj

as the mean of ξij for platform j’s user type k. Average time on platform j for single-homers,

multi-homers, and all users are, respectively:

Tsj =
ξsj − γjαj − b

σj
(22)

Tmj =
(ξmj − γjαj − b) +

(
ξmj′ − γjαj′ − b

)
· ρ/σj′

σj − ρ2/σj′
(23)

Tj = (1 − µj)Tsj + µjTmj (24)

We consider three treatment conditions, indexed by g:

• B: the DA experiment Bonus group, modeled by setting b = bB in equations (22)–(24).
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• Dj: the FIES experiment Facebook and Instagram Deactivation groups, modeled by setting

Tij = 0 and b = 0. This gives TDj
mj′ =

ξmj′−γjαj′
σj′

.

• C: Control, modeled by setting b = 0 in equations (22)–(24).

Define T g
j as the modeled average time use in treatment condition g, and define T g

kj as that average

for user type k. Define T̂ g
j and T̂ g

kj as the observed empirical analogues.

4.2 Distance Functions

Define Θ :=
{
{ξkj} , {σj} , ρ, {γj}j , η, η0, αI

}
as the vector of 12 structural parameters to be es-

timated. Our estimator minimizes the sum of squared errors between modeled statistics (such as

diversion ratios and price responses) and their empirical analogues. We now describe the distance

functions expressing these errors.

Tables 1 and 2 present the exogenous parameters and empirical moments. We set m = 1 as

a normalization. Note that the number of advertisers A is a normalization that impacts units of

estimated η, η0 but does not impact incentives faced by platforms in either combined or separated

equilibria.

Control group use. There are four control group use moments: average Facebook and Insta-

gram use for single-homers and multi-homers. The distance functions are the difference between

modeled and empirically observed use:

hCkj (Θ) = TC
kj − T̂C

kj . (25)

We construct the empirical moments from the DA experiment. As shown in Table 2, for single-

homers and multi-homers, respectively, average Facebook use is 0.82 and 0.75 hours per day, and

average Instagram use is 0.33 and 0.30 hours per day.

These average use moments will be most informative about the value of the average demand

shifters ξkj .

Price response. There are two price response moments: percent reductions in Facebook and

Instagram use from the DA experiment Bonus condition. The distance functions are the difference

between modeled and empirically observed percent reductions:

hBj (Θ) =
TB
j − TC

j

TC
j

−
τ̂Bj

T̂C
j

. (26)

We normalize the bonus effects by control group usage because participants in the DA experiment

were relatively heavy users, which could make the non-normalized effects larger than they would

be for average users.

We construct the empirical moments from the DA experiment; τ̂Bj is estimated in equation

(19). As shown in Table 2, the bonus reduced Facebook and Instagram use by 38 and 33 percent,

respectively.
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Note that the DA experiment bonus also changed the appeal of the outside option, because it

subsidized reductions from the six FITSBY apps, not just Facebook and Instagram. However, since

Facebook and Instagram comprise 80 percent of FITSBY consumption in the DA baseline data,

the modeled moment in equation (26) assumes no change in the appeal of the outside option. Since

if anything, the other four apps appear to be substitutes for Facebook and Instagram, subsidizing

reductions in those other four apps increases Facebook and Instagram use, biasing the estimated

price response toward zero. Since we find that the price response is already quite large, any bias

strengthens our results that any effects on consumer surplus are relatively small.

The price responses will be most informative about the diminishing marginal utility parameters

σj . To see this, notice from equation (21) that single-homers’ modeled response to the bonus is

TB
sj − TC

sj = −bB/σj . Multi-homers’ modeled price response is that same quantity adjusted for the

change in Tij′ .

Diversion ratio. There is one diversion ratio moment: the average diversion ratio from Face-

book and Instagram deactivation. The distance function is

hD (Θ) =
1

2

∑
j

[
TDj
j′ − TC

j′

TC
j

−
τ̂Dj
j′

T̂C
j

]
. (27)

We construct the empirical moment from the FIES experiments; τ̂Dj
j′ is estimated in equation

(18), and T̂C
j is the Control group average use during the treatment period. As shown in Table 2,

the diversion ratios are very close to zero.

The deactivation treatment effect τ̂Dj′ is local to the people induced to deactivate by the $150

payment. In theory, the average treatment could be different for the full population that includes

the “never-takers” not induced to deactivate by the payment. One might hypothesize that the

never-takers are unwilling to deactivate j partially because they don’t feel they have good online

substitutes, and thus that the diversion ratio to social media platform j′ would be smaller. Any

such bias would strengthen our finding that the diversion ratios are quite small.

The diversion ratios will be most informative about the substitution parameter ρ. To see

this, notice from equation (21) that for multi-homers, the effect of deactivating platform j (i.e.,

exogenously setting Tij = 0) on platform j′ time use is TDj
mj′ − TC

mj′ = −ρTC
mj

σj′
. Since platform j

single-homers always have Tij′ = 0 and multi-homers comprise share µj of platform j’s users, the

effect of deactivating j on platform j′ time use among platform j users is TDj
j′ − TC

j′ = −µj
ρTC

mj

σj′
.

Ad elasticity. There are two ad elasticity moment, corresponding to modeled ad load elastic-

ities on Facebook and Instagram. The distance function is

hAj (Θ) =
∂Tj

∂αj

αj

Tj
− ∂̂T

∂α

α

T
. (28)

We import the empirical moment from Brynjolfsson et al. (2024), which evaluated a 9-year
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Facebook experiment where a random 0.5% subset of users never experienced ads.5 On the basis

of their Figure 2, we assume that the long-run elasticity of time-on-platform to ad load is ∂̂T
∂α

α
T =

−0.094, with a standard error of 0.0196. We assume that the ad elasticity is the same on both

platforms.

The ad elasticities will be most informative about the ad disutility parameter γj . To see this,

notice from equation (21) that single-homers’ modeled ad response is
∂Tsj

∂αj
=

−γj
σj

. Multi-homers’

modeled price response is that same quantity adjusted for the change in Tij′ .
7

Platform first-order condition. We do not currently have an estimate of Meta’s price

elasticity of advertising demand. Instead, we identify that parameter by assuming that Meta

sets ad load to maximize revenues in our model—just as it is common to infer firms’ marginal

costs by assuming static Nash-Bertrand pricing, following Berry, Levinsohn, and Pakes (1995).

Beginning with the merged equilibrium revenue function from equation (5) and substituting our

parameterization of H(·), the platform’s first-order conditions give

hFj (Θ) = 0 =
∑
i

[
∂

∂αj
(α · T i(α))

]
· pi (α · T i(α)) ·

1 +
α · T i(α)

pi (α · T i(α))
· ∂pi
∂ (α · T i(α))︸ ︷︷ ︸

inverse demand price elasticity

 . (29)

The expression for α · T i(α) and ∂
∂αj

(α · T i(α)) are known conditional on the user-side pa-

rameters, and the remaining terms depend on advertiser-side parameters. Conditional on pi(·),
these conditions identify the price elasticity of inverse advertiser demand. In addition, Tij(α) =

Tkj(α) + eij . Inspecting equation (29) makes clear that the first-order condition will depend on

E2
kj ≡ E

[
e2ij |i ∈ Uk

]
for k = s,m and EmFI ≡ E [ei1ei2|i ∈ Um]. We use the variance and covari-

ance of time use from the DA experiment, equivalent to using nonparameteric estimates of the

distribution of ξij .

Average ad price. To pin down η, we also incorporate information from Facebook’s average

cost per impression observed on RevealBot during our study period, P̂F ≡ 1
T

∑
t p̂Ft, and match

this to our model counterpart, given by:

1

IF

∑
i∈Uj

αF · TiF (α) · pi =
1

IF

∑
i∈UF

αF · TiF (α) · η ·
(

1 + η0 −
α · T i(α)

A

)
(30)

where IF :=
∑

i∈UF
αF · TiF (α). The distance function is therefore:

hP (Θ) =
1

IF

∑
i∈UF

αF · TiF (α) · pi − P̂F (31)

5The experiment estimates the elasticity of average time use with respect to ad load, which is what we model
above.

6We back out standard errors by assuming a standard normal distribution and we assume no covariance of the
ads and no-ads groups to be able to combine the standard errors of the groups

7The overall modeled ad elasticity is
∂Tj

∂α
α
Tj

=
∑

j −γ ·
[
1−µ
σj

+ µ
σj−ρ2/σj′

]
· α
TC
j
.
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Our user-side estimates come from the 2020 Facebook deactivation experiment, which covers

2020Q4. We therefore calculate average price per click over this period by scraping weekly data

reported on RevealBot’s website. RevealBot reports prices separately for Facebook and Instagram.

Equation (31) also depends on variance and covariance of time use.

Ad load. We assume that we know ad load on Facebook with certainty, but do not observe

ad load on Instagram. Therefore, αF is known, but αI is a parameter to be estimated. The

first-order conditions, combined with the average ad price moment, constitute 3 equations with 3

unknowns, conditional on user-side parameters (η, η0, αI). Intuitively, Meta’s first-order condition

for Facebook, combined with observed ad load, average price, and user-side parameters, identifies

the price elasticity of advertising demand. The first-order condition for Instagram then uses the

user-side parameters and price elasticity of demand to back out αI .

Loss from duplication. Advertiser’s losses from inefficient duplication of impressions depends

on ζj , which controls the decrease in click-through rates for duplicated campaigns. For person i

and advertiser a, the click-through rate for impressions in the first campaign is ωia, and the click-

through rate for impressions in the second campaign is (1 − ζi) · ωia. By definition, the average

click-through rate for the first campaign is E[ωia]. If all users are shown an identical campaign

twice, the average click-through rate across both campaigns is 1
2E[ωia+(1−ζi)ωia]. The percentage

decrease in click-through rates for a duplicated campaign is therefore:

1
2E [(2 − ζi)ωia] − E[ωia]

E[ωia]
=

1

2

E [−ζiωia|S]

E[ωia|S]
(32)

Since the regularity condition described in Section 1.1 must hold pointwise for each i, and ζj

depends the full distribution of ζi among multi-homers since it takes a time-use weighted average,

we must parameterize ζi. We assume that (1 − ζi) = κ · pi(αm)/(η · (1 + η0) for κ ∈ [0, 1]. We

estimate κ with the distance function:

hL(Θ) =

([
κ

2
· 1

N

∑
i

pi(α)

η · (1 + η0)

]
− 1

2

)
− L̂ (33)

where L̂ is the experimental estimate from Section B.1 of the percentage decrease in average click-

through rates due to duplication.

4.3 Estimation

Define h (Θ) :=
{{

hCkj

}
,
{
hBj

}
, hD,

{
hAj

}
,
{
hFj

}
, hP

}
as the vector of distance functions de-

scribed above. Θ contains 12 structural parameters, and h (Θ) contains 12 distance functions.

Our estimate of Θ minimizes the sum of squared distance functions:

Θ̂ = arg min
Θ

h (Θ)′ h (Θ) . (34)

We construct standard errors using the Delta method. See Appendix B.2 for details.
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For counterfactuals, we also need estimes of the the distribution of ξij . We estimate this

distribution non-parameterically. Let ξij = ξkj + εij for k ∈ {s,m}. For each i in the DA control

group, we invert Equation (21) given estimated parameters to estimate εij for all i, j.8 The resulting

εij are draws from distributions Ξm and Ξsj , where Ξm is the joint distribution of (εi1, εi2) for users

in group k = m and Ξsj is the distribution of εij for users in group k = s on platform j. We use

observed draws of εij to estimate Ξ̂m and Ξ̂sj using a Gaussian kernel. Define Ξ̂ :=
(

Ξ̂m, Ξ̂s1, Ξ̂s2

)
as a tuple collecting the estimated distributions.

Table 3 presents preliminary estimates. Instagram time use has much steeper curvature than

Facebook time use. This means Instagram time use is “stickier,” and will respond less to changes

in ad load than time use on Facebook. For this reason, ad load estimated from the first-order

condition is higher on Instagram than Facebook, although the estimate is very imprecise. The

diversion parameter ρ is negative but small, indicating that the platforms are weak substitutes. We

calculate the aggregate elasticity of advertiser demand as -1.2 on Facebook and -1.22 on Instagram.
9 Finally, our pilot experiment estimating loss from duplication indicates that κ = 0.68. This

implies that the second impression is worth at most 68 percent of the value of the first impression,

and implies that in the merged equilibrium, (ζF , ζI) = (0.63, 0.64).

5 Counterfactual Simulations of Facebook-Instagram Separation

In this section, we simulate a Facebook-Instagram separation. In the separated equlibrium, plat-

forms independently set ad load. We assume they retain their respective ad targeting systems,

meaning that perceived ωia is the same for i on both platforms. Since each platform cannot ob-

serve whether user i is impressed by their rival, there may be wasteful duplication.

Counterfactual ad load. Under Facebook-Instagram separation, reaction functions are (substi-

tuting in advertiser-side parameters):

α∗,s
j (α−j ;Θ,Ξ) := arg max

αj

(
1 − ζj(α) ·O′

aj (α)
)
·η

(∑
i

αjTij(α) ·
(

1 + η0 −
αjTij(α)

A

))
j = 1, 2

(35)

The counterfactual equilibrium is (αs
1, α

s
2) the fixed point where α∗,s

j (αs
−j ; ·) = αs

j for j = 1, 2.

Note that evaluating Equation (35) requires calculating marginal overlap O′
aj(α), which involves

integrating over a transformation of the distribution Ξm where the transformation depends on αj

and α−j .

8The minimum distance estimator implicitly relies on the distribution of εij because the platform first-order
condition depends on variance and coviarance of eij . However, since we estimate εij pointwise, without imposing any
functional form, all that matters for platform incentives are the variance and covariance of eij , which we can estimate
directly.

9We define the aggregage elasticity of advertiser demand by analogy to the elasticity of advertiser demand in a
one-sided market with homogeneous users. See Appendix C.2.3 for details.
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Welfare in counterfactual equilibrium. Let αm and αs represent ad load in merged and

counterfactual separated equilibrium, respectively, with time use Tm
i and T s

i . The change in

consumer surplus is:

∆CS :=
∑
i

Ui(T
s
i ) − Ui(T

m
i ) (36)

The change in platform surplus is:

∆PS :=
∑
j

Rs
j(α

s) −Rm(αm) (37)

Advertiser surplus in the merged equilibrium intergrates under the advertiser demand curve for

each user and sums across users:

ASm(αm) =
∑
i

Am ·
ˆ (πω)max

pi(αm)
xdH(x) (38)

where pi(α) is given by Equation (4). Advertiser surplus in the counterfactual equilibrium changes

due to both endogenous changes in price, as well as inefficient duplication of ads. In Appendix C.1,

we show that in the counterfactual equilibrium:

ASs
j (αs) =

surplus — no duplication︷ ︸︸ ︷∑
i∈Uj

Am ·
ˆ (πω)max

pij(αs)
xdH(x)−

duplication loss︷ ︸︸ ︷
ζj ·
∑
i

ˆ (πω)max

p
i
(αs)

xdH(x) (39)

where p
i
(αs) := max

k
H−1

i

(
1 − αkTik(αs)

Am

)
The change in advertiser surplus is therefore ∆AS :=

∑
j AS

s
j (αs) − ASm(αm). Appendix C.1

provides explicit formulas given our parameterizations.

Main counterfactual results. Table 4 presents preliminary results. Panel A shows effects on

market outcomes. Ad load increases on both platforms by a similar amount in levels. Time use on

both platforms declines, although not by much. Because the Instagram curvature parameter σj is

much higher, time use falls by less on Instagram in response to greater ad load than time use on

Facebook does. Ad prices fall significantly, both due to duplication (advertisers demand a lower

price to fill the same number of ad slots) and greater ad supply.

Panel B shows how these market effects impact surplus. Consumer surplus falls slightly. Adver-

tiser surplus rises by about 32%. However, surplus would have risen by 61% with no duplication.

The wedge is due to ζj > 0: at counterfactual equilibrium ad load, (ζF , ζI) = (0.64, 0.64), implying

that the revenue loss from expected overlap is about 60%. This demonstrates that duplication

produces significant inefficiencies that are quantitatively relevant for welfare. Platform surplus falls

by 4.5% on Facebook at 24.3% on Instagram.

The total surplus effects are quite modest, because losses from lower consumer and platform
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surplus offset gains from higher advertiser surplus. Total surplus falls by 0.9%, while advertiser and

consumer surplus combined increases by 1.4%. Overall, the platform separation mostly transfers

surplus from platforms to advertisers.

Counterfactual sensitivity. We now investigate the sensitivity of counterfactual results to our

parameter estimates. We perturb one structural parameter at a time, leaving the rest unchanged;

find the merged and separated equilibrium ad load under the new parameters; and calculate the

change in total surplus from the merged to the separated equilibrium as a fraction of total surplus

in the baseline merged equilibrium with original parameters. These exercises illustrate how our

user and advertiser-side empirical estimates help resolve theoretical ambiguities about the welfare

effects of a Facebook-Instagram separation.

Figure 7 shows the total surplus impact of a Facebook-Instagram separation under alternative

user-side parameter estimates. The top panel demonstrates the importance of credibly estimating

user diversion: were the platforms stronger substitutes (ρ more negative), then platform separation

could increase total surplus. The top panel of Appendix Figure A1 explains why: if the platforms

were stronger substitutes, separation would cause Instagram to cut ad load to compete for users,

increasing user surplus by enough to overwhelm a lower loss in advertiser surplus (because Facebook

does not cut ad load) and inefficient duplication of impressions.

The bottom panel of Figure 7 demonstrates the non-monotonic relationship between user aver-

sion to ads and the total surplus impact of platform separation. When average γj goes to zero,

meaning users do not care about ads, platform separation increases competitiveness of ad markets

and increases total surplus. As users become more averse to ads, separation still increases ad load

as platforms compete primarily on the advertiser side of the market, but the infra-marginal welfare

loss on the user side overwhelms the advertisers’ surplus gains. But once user ad aversion becomes

sufficiently large, platforms begin to compete on the user side, shown in the bottom panel of Ap-

pendix Figure A1. User-side competition reduces separated equilibrium ad load, and the increased

user surplus overwhelms the lost advertiser surplus.

Turing to advertiser-side parameters, Figure 8 presents the impact of user overlap and loss from

duplication on the total surplus effects.10 In the top panel, we vary the share of multi-homers

as a share of total users, and allocate single homers to keep the ratio single-homers on Facebook

and Instagram constant. Overlap has a minimal impact on total surplus: as overlap decreases,

platforms compete less intensively on the advertiser side, meaning ad load increases by less, but

losses from inefficient duplication and user disutility of ads also fall to partially compensate.

The bottom panel shows that the sign of the total surplus change from platform separation

hinges on an appropriate estimate for the loss from duplicated impressions. The figure plots the

total surplus change due to separation for alternative assumptions about the loss from duplication,

where average ζj spans its entire admissable range (from κ = 1, implying low loss from duplication

and low ζj , to κ = 0, implying high loss from duplication and high ζj). If loss from duplication were

10Appendix Figure A2 shows the effects of these alternative estimates on equilibrium ad load.
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lower than our experimental estimates, platform separation could increase total surplus, because

the increased advertiser surplus from higher ad load would overwhelm the user surplus loss. If we

had assumed complete loss from duplication, plotted to the far right of the figure, we would have

estimated much higher total surplus losses of 3%.

6 Conclusion

This paper introduces a new model of competition between two-sided media platforms with het-

erogeneous advertisers running targeted ads to impress heterogeneous users. The model highlights

the distortions that occur when platforms are jointly owned, and characterizes important empiri-

cal parameters that govern whether anti-trust policy that separates ownership can mitigate those

distortions.

Our theory emphasizes how jointly owned platforms coordinate ads across platforms to avoid

inefficient duplication of impressions, but inefficiently restrict ad load to raise prices. Separating

platform ownership increases competition, but also leads to inefficient duplication of impressions,

since platforms can no longer coordinate. Competitive incentives in the separated ownership equi-

librium depends on user overlap across platforms, user time use heterogeity, user diversion across

platforms, and the advertiser price elasticity of demand.

We apply our framework to study the effects of separating two of Meta’s leading platforms:

Facebook and Instagram. First, we provide descriptive empirical evidence on user-side parameters

from randomized experiments on Meta users. These experiments show that Facebook and Instagram

are weak substitutes, implying limited incentives for platforms to restrict ad load to compete on

the user side. Next, we use experimental moments to structurally estimate a parameterized version

of our model. This allows us to infer advertiser demand elasticities based on Meta’s current actions

and a first-order condition for profit maximization.

We use the estimated model to simulate the effects of a Facebook-Instagram separation con-

templated by several global anti-trust authorities. Preliminary estimates indicate that separation

would mostly transfer surplus from platforms to advertisers, with a small loss for users. Total

surplus would remain mostly unchanged, since large potential gains to advertisers through greater

ad load are offset by inefficiencies due to wasted impressions, lost consumer surplus from more ads,

and lost platform surplus. Our findings indicate that separation causes meaningful inefficiencies

and has important redistributive, but perhaps not total welfare, effects.
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Table 1: Exogenous Parameters

Parameter Formula Value Data source

FB ad load (ads/hour) αF 133 Authors’ calculations
Share of FB users that are multi-homers µF 0.68 DA
Share of IG users that are multi-homers µI 0.88 DA
FB ad price ($/1000 impressions) pF 16 Revealbot
IG ad price ($/1000 impressions) pI 11 Revealbot
Number of US advertisers A 40,000 MediaRadar
Impressions per campaign m 1 Normalization

Notes: This table presents the exogenous parameters used to construct the distance functions
described in Section 4. “DA” refers to the paper “Digital Addiction” (Allcott, Gentzkow, and
Song, 2022).

Table 2: Empirical Moments

Parameter Formula Value SE Data source

Single-homer average FB use (hours/day) T̂C
sF 1.15 0.09 DA

Multi-homer average FB use (hours/day) T̂C
mF 1.07 0.05 DA

Single-homer average IG use (hours/day) T̂C
sI 0.39 0.07 DA

Multi-homer average IG use (hours/day) T̂C
mI 0.36 0.03 DA

FB Bonus response
τ̂BF
T̂C
F

0.38 0.04 DA

IG Bonus response
τ̂BI
T̂C
I

0.33 0.03 DA

FB-IG diversion ratio
τ̂DF
mI

T̂C
mF

0.044 0.022 FIES

IG-FB diversion ratio
τ̂DF
mF

T̂C
mI

0.00 0.11 FIES

Ad load elasticity
∂̂Tj

∂αj

αj

Tj
-0.094 0.019 Brynjolfsson et al. (2024)

% CTR decrease from duplication L̂ 0.27 Duplication loss pilot
Notes: This table presents the empirical moments used to construct the distance functions
described in Section 4. “DA” refers to the paper “Digital Addiction” (Allcott, Gentzkow, and
Song, 2022). “FIES” refers to the 2020 Facebook and Instagram Election Study (Allcott et al.,
2024).
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Table 3: Parameter Estimates

Parameter Description Units Estimate SE

ξsF FB single-homer demand intercept $/hour 7.9 0.88
ξmF FB multi-homer demand intercept $/hour 7.5 0.81
ξsI IG single-homer demand intercept $/hour 9.3 1.26
ξmI IG multi-homer demand intercept $/hour 8.8 0.84
σF FB curvature $/hour2 8.4 0.90
σI IG curvature $/hour2 24.1 3.14
ρ Cross-demand response $/hour2 0.343 0.85
γF FB ad load disutility $/ad 0.0080 0.0020
γI IG ad load disutility $/ad 0.0058 0.01
αI IG ad load ads/hour 235.3 404

η Advertiser demand slope share of A
$/impression 1.20 0.69

η0 Advertiser demand intercept share of A 0.983 0.01
κ Value of duplicated impression 1/$ 0.68

Notes: This table presents the parameter estimates from the estimation procedure described in
Section 4.

Table 4: Counterfactual Simulation Results

(1) (2) (3)
Baseline FB-IG separation

∆ from %∆ from
baseline baseline

Panel A: Market Outcomes
FB ad load (ads/hour) 133 12.0 9.0%
IG ad load (ads/hour) 235 9.0 3.8%
Average time on FB (hours) 0.77 -0.01 -1.5%
Average time on IG (hours) 0.30 -0.00 -0.7%
Average FB ad price ($/1000 impressions) 12 -2 -15%
Average IG ad price ($/1000 impressions) 11 -3 -28%

B. Surplus
Consumer surplus ($/user-year) 3,244 -28.6 -0.9%
Advertiser surplus ($/user-year) 242 77.0 31.8%

if no duplication loss 242 155.9 64.4%
duplication loss ($/user-year) - 78.9 -32.6%

Advertiser + consumer surplus ($/user-year) 3,486 48.3 1.4%
Platform surplus: FB ($/user-year) 422 -28.6 -6.8%
Platform surplus: IG ($/user-year) 296 -81.8 -27.7%
Total surplus ($/user-year) 4,082 -36.0 -0.9%

Notes: This table presents the counterfactual simulation results. Baseline refers to the initial
equilibrium, where Facebook and Instagram are merged. Columns 2 and 3 present the simulated
effects of separating Facebook and Instagram.
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Figure 1: Key Advertiser-Side Forces: Numerical Examples
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(c) Partial Overlap and Duplication Together

Notes: This figure presents numerical examples described in Section 1.4.3. Panel (a) plots reaction functions
in an example with partial overlap but no duplication in separated equilibrium. Panel (b) plots reaction
functions in an example with full overlap and duplication. Panel (c) plots reaction functions in an example
with partial overlap and duplication.
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Figure 2: Time Use and Overlap
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Notes: This figure presents a heat map describing the joint distribution of Facebook and Instagram
time use in the baseline period (April 12–May 2, 2023) of the Digital Addiction experiment (Allcott,
Gentzkow, and Song, 2022). The histograms at the top and right present the marginal distributions
of Facebook and Instagram use, respectively. Single-homers (consumers with exactly zero time use
on a platform) are plotted separately as values less than zero.
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Figure 3: Effects of Deactivation on Focal Platform Use

Notes: This figure presents the share of Deactivation and Control groups that used Facebook and
Instagram on each day of the 2020 Facebook and Instagram Election Study. “Use” is defined as
logging in and seeing five or more pieces of content. The dark grey shaded area indicates the Control
group’s 7-day deactivation period, while the light grey shaded area indicates the Deactivation
group’s 35-day additional deactivation period. We exclude Facebook use data from October 27th
due to a logging error. This figure and figure note are from (Allcott et al., 2024). When we receive
access to the FIES data, we will create new figures that are directly tailored to our analysis.
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Figure 4: Effects of Deactivation on Substitute App Use

(a) Facebook Deactivation

(b) Instagram Deactivation

Notes: Panels (a) and (b) present local average treatment effects of Facebook and Instagram
deactivation in the 2020 Facebook and Instagram Election Study passive tracking sample. These
figures are from Allcott et al. (2023). When we receive access to the FIES data, we will create new
figures that are directly tailored to our analysis.
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Figure 5: Digital Addiction Facebook and Instagram Use
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Notes: Panels (a) and (b) present average Facebook and Instagram use in the Digital Addiction
experiment Bonus and Bonus Control groups, limiting the sample to the Limit Control group.
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Figure 6: Effects of Screen Time Bonus on Facebook and Instagram Use
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Notes: This figure presents the effects of the Digital Addiction experiment Screen Time Bonus on
Facebook and Instagram use. The grey shaded region indicates the 20-day period when the Bonus
group was being paid $2.50 per hour to reduce use of Facebook, Instagram, Twitter, Snapchat, web
browsers, and YouTube.

40



Figure 7: Counterfactual Total Surplus Sensitivity: User-Side Parameters
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(b) Ad Disutility

Notes: This figure presents the impact of alternative user-side parameters on estimates of the total surplus
effects of a Facebook-Instagram separation. We perturb the parameter on the horizontal axis, compute ad
load in the new merged and separated equilibria, and calculate the change in total surplus from the merged
to separated equilibrium as a fraction of the total surplus in the merged equilibrium with baseline parameter
values. Higher ρ indicates that platforms are stronger substitutes, and higher average γj implies that users
are more averse to ad load.
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Figure 8: Counterfactual Total Surplus Sensitivity: User-Side Parameters
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(b) Loss from Duplicated Impressions

Notes: This figure presents the impact of alternative advertiser-side parameters on estimates of the total
surplus effects of a Facebook-Instagram separation. We perturb the parameter on the horizontal axis,
compute ad load in the new merged and separated equilibria, and calculate the change in total surplus from
the merged to separated equilibrium as a fraction of the total surplus in the merged equilibrium with baseline
parameter values. Higher overlap maintains the ratio of single-homers on Facebook to Instagram, and varies
the total number of multi-homers as a fraction of total users. Higher average ζj indicates a greater loss from
duplciation, with the range of plotted ζj generated from κ ∈ [0, 1].
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A Model Appendix

A.1 Alternative to Constant Impressions Per Campaign

This subsection provides an alternative assumption that delivers equivalent equilibrium prices as

the assumption in the text that users have the same optimal impressions per campaign m.

Assumption 3. The optimal number of impressions per campaign for user i and advertiser a is

given by:

mia(ωiaπa, pi) =
f · ωiaπa

pi + η · (1 + η0)

where f is a constant.

Assumption 3 has sensible comparative statics – the optimal number of impressions is increasing

in profits per impression, and decreasing in price per impression. The specific functional form

ensures that market clearing prices are unchanged relative to their implied value if f = 2m. Under

Assumption 3, the market clearing condition in the merged equilibrium becomes:

α · T i(α) =
∑
a

mi · 1[pi ≤ ωiaπa]

= E[mi|ωiaπa ≥ pi] ·A · (1 −Hi(pi))

=
f

2
· 1

pi + η · (1 + η0)
· (pi + η · (1 + η0))A · (1 −Hi(pi))

= m ·A · (1 −Hi(pi)) (40)

where equation (40) is the same as equation (3) under the assumption in the main text.

A.2 Derivation of Marginal Overlap Function

This subsection derives the marignal overlap function in Section 1.2.2.

Proof. By definition:

O′
aj(q) = Pr(i (infra)marginal on −j given q−j given i marginal on j given qj)

= Pr

(
pi,−j

ωia
≤ ca,−j(q−j)|

pij
ωia

= caj(qj)

)
= Pr

(
pi,−j

pij
≤ ca,−j(q−j)

caj(qj)

)

= Pr

pi,−j

pij
≤

πa

(
1 − ζ−jO

′
a,−j(q)

)
πa

(
1 − ζjO′

aj(q)
)
 (41)

where the last line applies the fact that caj(qj) = πa

(
1 − ζO′

aj

)
.

2



Online Appendix Digital Media Mergers

Next, use market clearing to get
pi,−j

pij
:

αjTij(α) =
∑
a

1
[
πa
(
1 − ζjO

′
aj(q)

)
ωia ≥ pij

]
= A

[
1 −Hi

(
pij

1 − ζjO′
aj(q)

)]

Going from the first line to the second implicitly applies Assumption 1 because it says that the

distribution of πaωia does not depend on (for instance) different time usage on different platforms

and can be described by a single person-specific distribution. This follows from independent click-

through rates. Solving for pij :

pij =
(
1 − ζjO

′
aj(q)

)
H−1

i

(
1 − αjTij(α)

Am

)
Therefore:

pi,−j

pij
=

(
1 − ζ−jO

′
a,−j(q)

)
H−1

i

(
1 − α−jTi,−j(α)

Am

)
(

1 − ζjO′
aj(q)

)
H−1

i

(
1 − αjTij(α)

Am

) (42)

Substituting (42) into (41), the ratios
(1−ζ−jO

′
a,−j(q))

(1−ζjO′
aj(q))

cancel, and we end up with:

O′
aj(q

∗) = O′
aj = Pr

H−1
i

(
1 − α−jTi,−j(α)

Am

)
H−1

i

(
1 − αjTij(α)

Am

) ≤ 1


= Pr[αjTij(α) ≤ α−jTi,−j(α)]

=

∑
i∈Uj

1[αjTij(α) ≤ α−jTi,−j(α)]

Nj

Going from the first to the second line to the second uses the fact that H−1
i is monotone increasing.

The third line follows by definition and gives the expression in the text.

A.3 Presentation of Homogeneous Users, Constant Click-Through Rate, and

No Duplication Special Case

See Appendix A.4 for derivations.

A.3.1 Social Optimum

As a benchmark, we consider a constrained social planner who sets ad load and advertiser prices

to maximize the sum of user and advertiser surplus, subject to user optimization and merged

equilibrium market clearing constraints in equation (3). The social planner chooses:
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αsp = arg max
α

∑
i

U∗
i (T (α), n;α) + Am ·

(πω)maxˆ

x=p(α)

xdH(x). (43)

where U∗(·;α) = maxT U(·;α). The planner allocates ad slots to users with highest click-through

rates, an allocation mimicked by the platform when setting its contract with advertisers.

Define γj ≡ − 1
Tj

∂U∗

∂αj
> 0 as the marginal disutility from ads given optimized time use. The

planner solution satisfies

αsp
j =

consumer surplus︷ ︸︸ ︷
γjTj(α) −

advertiser surplus︷ ︸︸ ︷
p(α)

(
Tj(α) + αsp

−j

∂T−j

∂αj
(α)

)
p(α) · ∂Tj

∂αj
(α)

, j = 1, 2. (44)

where the denominator is negative. The expression says that the social planner sets ad load to

equalize the marginal consumer surplus loss from additional ads to the marginal advertiser surplus

net gain from additional ads. Optimal ad load is high when users’ disutility of ads γ is low or

advertisers’ profits from increased ad loads are high. The value of ad load to advertisers depends

on both the equilibrium ad price p(α), which signals scarcity of user attention; the equilibrium

number of ads served, controlled by Tj(α); and the impact of ad load on user time on platform,

controlled by
∂T−j

∂αj
and

∂Tj

∂αj
. Ad load on platform j is higher when

∂T−j

∂αj
is high, i.e. the platforms

are substitutes. In that case, some of the lost time use on j due to higher αj increases time use,

and hence ad impressions, on −j, rather than resulting in lost impressions.

A.3.2 Merged Equilibrium

The merged platform chooses

αm = arg max
α

p(α) ·
∑
i

α · T i(α). (45)

The solution satisfies

αm
j =

infra-marginal revenue︷ ︸︸ ︷
−∂p(α)

∂αj
·α · T (α)−

marginal revenue︷ ︸︸ ︷
p(α) ·

(
Tj(α) + α−j

∂T−j

∂αj
(α)

)
p(α) · ∂Tj

∂αj
(α)

, j = 1, 2. (46)

The expression says that the merged platform sets ad load to equalize the marginal revenue loss

from infra-marginal impressions and the net marginal revenue impact from marginal impressions

due to high ad load. Higher ad load reduces revenue on infra-marginal impressions by lowering

4
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equilibrium prices, but has an ambiguous effect on revenue from marginal impressions. The effect

on revenue from marginal impressions is increasing in a direct effect from additional ad load on

infra-marginal time use and decreasing in the endogenous indirect effect of lower time use due to

higher ad load.

The merged platform solution aligns with the planner solution if

−∂p(αsp)

∂αj
·αsp · T (αsp) = γjTj(α

sp), j = {1, 2} . (47)

where the right-hand side of Equation (47) equals the total utility loss on platform j due to higher

ad load. This highlights the distortion in the merged equilibrium: the platform holds back ad load

to increase equilibrium prices, rather than to avoid consumer harm. This disconnect means there

is no reason to think that equation (47) will hold, or that the merged equilibrium will tend to

produce ad load that is higher or lower than socially optimal—an ambiguity that is typical in the

two-sided markets literature. Roughly, as price becomes more sensitive to ad load, so that − ∂p
∂αj

increases, then ad load in a merged competitive equilibrium is likely be to low, and vice versa as

price becomes less sensitive to ad load.

A.3.3 Separated Equilibrium

Suppose that separated platforms set αj simultaneously, taking as given their rival’s actions. Each

separated platform solves

αS
j = arg max

αj

p(αj , α−j) · αj ·
∑
i∈Uj

Tij(αj , α−j). (48)

Price p(α) is still given by by Equation (4) because platforms coordinate to avoid duplication. The

solution satisfies

αS
j =

−∂p(α)
∂αj

· αj · Tj(α) − p(α) · Tj(α)

p(α) · ∂Tj

∂αj
(α)

j = 1, 2. (49)

This differs from equation (46) in two ways. First, separated platforms ignore the impact of

increased ad load on revenue from infra-marginal impressions on platform −j. This is a standard

Cournot externality that increases ad load relative to the merged equilibrium. Second, separated

platforms do not consider how ad load on j will indirectly impact time use on −j through user

substitution, reflected in the missing α−j
∂T−j

∂αj
term. When platforms are substitutes, i.e.

∂T−j

∂αj
> 0,

the merged platform loses less revenue from lost marginal impressions than separated platforms

because consumers substiute to the other platform. This time use diversion tends to lower αS
j

relative to αm
j . The argument is reversed if platforms are complements, i..e

∂T−j

∂αj
< 0.

Overall, ad load in the separated equilibrium may be higher or lower than in the merged

equilibrium. If platforms are very strong substitutes, time use diversion may overwhelm the Cournot

5



Online Appendix Digital Media Mergers

externality and decrease ad load when platforms separate. Separating platforms may therefore

bring ad load closer to or further from the social optimum. Reducing market power does not

unambiguously reduce the distortion in competitive equilibrium. This is because the distortion is

not due to platform pricing power, but because user time use is not directly priced, so user utility

does not directly enter the platform problem.

Summary. In this simplified environment, the merged platform equilibrium may have higher or

lower ad load relative to the socially optimal level. Separating platform ownership may increase or

decrease ad load relative to when platforms are merged, and hence might mitigate or exacerbate

the monopoly distortion. The impact of platform separation on ad load in competitive equilibrium

depends on user-side diversion, parameterized by
∂T−j

∂αj
.

A.4 Derivations for Section 1.3

This subsection derives expressions in Section 1.3.

Derivation of Equation (44). First, note that given assumptions in Section 1.3:∑
i

U∗
i (T (α), n;α) = NU∗ (T (α), n;α) ;

The first-order conditions for Problem (43) are therefore:

0 =
∂

∂αj

NU∗ (T (α), n;α) + NAm ·
(πω)maxˆ

x=p(α)

xdH(x)


= N

∂U∗(·;α)

∂αj
−NAm · p (α) · h (p(α)) · ∂p (α)

∂αj

Note that from Equation (4), applying the inverse function rule:

∂p (α)

∂αj
= − (Am · h (p (α)))−1 ·

[
Tj + αj

∂Tj

∂αj
+ α−j

∂T−j

∂αj

]
(50)

The FOC becomes:

0 =
∂U∗(·;α)

∂αj
+ p (α) ·

[
Tj + αj

∂Tj

∂αj
+ α−j

∂T−j

∂αj

]
Solving for αj :

αj =
−∂U∗(·;α)

∂αj
− p(α) ·

(
Tj + α−j

∂T−j

∂αj

)
p(α) · ∂Tj

∂αj

which gives the expression in the text, after substituting γj = 1
Tj

∂U∗

∂αj
.
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Derivation of Equation (46). The first-order conditions for Problem (45) are:

0 =
∂

∂αj
[p(α) ·N ·α · T (α)]

=
∂p

∂αj
·α · T (α) + p(α) · Tj(α) + p(α) ·α · ∂T (α)

∂αj

where ∂T (α)
∂αj

is a Jacboian. Expanding out the vector α in the third term and rearranging yields:

αj =
−∂p(α)

∂αj
·α · T (α) − p(α) ·

(
Tj(α) + α−j

∂T−j

∂αj
(α)
)

p(α) · ∂Tj

∂αj
(α)

which gives the expression in the text.

Derivation of Equation (49) . The first-order conditions for Problem (48) are:

0 =
∂

∂αj
(p(αj , α−j) · αj ·Nj · Tj(αj , α−j))

=
∂p

∂αj
· αj · Tj(α) + p(α) · Tj + p(α) · αj ·

∂Tj

∂αj
(α)

Solving for αj yields:

αj =
− ∂p

∂αj
· αj · Tj(α) − p(α) · Tj

p(α) · αj · ∂Tj

∂αj
(α)

which gives the expression in the text.

A.5 Derivations for Section 1.4

This subsection derives expressions in Section 1.4.

Derivation of Equation (12). The monopolist problem is:

αe,m = arg max
α

∑
i

pi ·α · T i

where the only difference relative to Equation (5) is that time use does not depend on α as it is

exogenous. The first-order conditions are:

0 =
∂

∂αj

[∑
i

pi ·α · T i

]

=
∑
i

α · T i ·
∂pi
∂αj

+ pi · Tij

7
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Rearranging, we get the expression in the text:

αj = −
∑

i α−j · Ti,−j · ∂pi
∂αj

+ Tij · pi∑
i Tij · ∂pi

∂αj

where
∂pi
∂αj

= − (Am · hi(pi(α)))−1 · Tij

where the value of ∂pi
∂αj

comes from differentiating Equation (4) with respect to αj and applying the

inverse function rule.

Derivation of Equation (14), no duplication. The separated platform problem is:

αe,s,i
j = arg max

αj

∑
i∈Uj

αj · Tij · pi (51)

The first-order condition is:

0 =
∑
i∈Uj

αj · Tij ·
∂pi
∂αj

+ Tij · pi

where ∂pi
∂αj

is as in Equation (12). Rearranging gives the expression in the main text:

αj = −
∑

i∈Uj
Tij · pi∑

i∈Uj
Tij · ∂pi

∂αj

Derivation of Equation (14), with duplication. The first-order condition for Problem (13) is:

0 =
∑
i∈Uj

αj · Tij ·
∂pij
∂αj

+ Tij · pij

Rearranging:

αj = −
∑

i∈Uj
Tij · pij∑

i∈Uj
Tij · ∂pi

∂αj

where:
∂pij
∂αj

= −
(
1 −O′

aj

)
· (Am · hi(pij))−1 · Tij −

pij(
1 −O′

aj

) ∂O′
aj

∂αj

which gives the expressions in the text.

Proposition 1 (Advertiser side strategic complementarity). Suppose that time use T i is exogenous

with (Ti1, Ti2) ∼ T such that
Tij

Ti,−j
has a well-defined distribution, Nj represents the continuous mass

of users on platform j so that O′
aj is differentiable, and Assumptions 1 and 2 hold. Then ad load

choices are strategic substitutes in the separated platform solution with no duplication described in

Problem (51) and either strategic complements or substitutes in the separarted platform solution

with duplication described in Problem (13).

8
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Proof. To show ad load choices are strategic substitutes in Problem (51), first note that given

Assumptions Assumptions 1 and 2:

∂pi
∂αj

= − η

Am
· Tij =⇒ ∂2pi

∂α−j∂αj
= 0

Differentiate Equation (14) with respect to α−j in the case of no duplciation, and substitute pij = pi:

∂αe,s,i
j

∂α−j
= −

∑
i∈Uj

Tij · ∂pi
∂α−j∑

i∈Uj
Tij · ∂pi

∂αj

= −
∑

i∈Uj
TijTi,−j∑

i∈Uj
T 2
ij

This proves that
∂αe,s,i

j

∂α−j
≤ 0, meaning choices of ad load are strategic substitutes.

To show that ad load choices are strategic complements in Problem (13), define the distribution

of Tij/Ti,−j as T−j and note that:

O′
aj = Pr (αjTij ≤ α−jTi,−j) = T−j (α−j/αj)

Therefore:
∂O′

aj

∂α−j
= T ′

−j

(
α−j

αj

)
· α−1

j ≥ 0,
∂O′

aj

∂αj
= −T ′

−j

(
α−j

αj

)
· α−j

α2
j

≤ 0

Moreover:
∂O′

aj

∂α−j∂αj
= −− T ′

−j

(
α−j

αj

)
· 1

α2
j

− α−j

α3
j

· T ′′
−j

(
α−j

αj

)
which has ambiguous sign. Differentiate Equation (14) with respect to α−j in the case with dupli-

cation:
∂αe,s,i

j

∂α−j
= −

∑
i∈Uj

Tij · pij(∑
i∈Uj

Tij · ∂pij
∂αj

)2 ·
∑
i∈Uj

Tij ·
∂2pij

∂α−j∂αj

Moreover:

∂2pij
∂α−j∂αj

= ζ
∂O′

aj

∂α−j
· η

Am
Tij + ζ

pij(
1 −O′

aj

)2 ∂O′
aj

∂α−j

∂O′
aj

∂αj

− pij(
1 −O′

aj(α
e,s,d

) ∂2O′
aj

∂α−j∂αj

The first term is positive because
∂O′

aj

∂α−j
is. The second term is negative because

∂O′
aj

∂αj
is. The third

term has a sign depending on the sign of
∂2O′

aj

∂α−j∂αj
, which is ambiguous and depends on the shape

of the pdf of Tij/Ti,−j . Overall, it is possible that
∂2pij

∂α−j∂αj
< 0, implying that

∂αe,s,i
j

∂α−j
< 0 (making

9



Online Appendix Digital Media Mergers

ad load choices strategic complements).

Remark. Proposition 1 holds under the weaker assumption that Hi is linear but not necessarily

identical across users.

A.5.1 Derivations for Section 1.4.3

This subsection derives expressions in Section 1.4.3.

Derivation of monopoly ad load. Monopoly revenue is:

Rm(α) = η ·

O

2
(α1 + α2) ·

(
1 + η0 −

α1 + α2

2Am

)
+
∑
j

(Nj −O)αj

(
1 + η0 −

αj

Am

)
The first-order condition with respect to αj is:

0 =
O

2

((
1 + η0 −

αj + α−j

Am

)
+ (Nj −O)

(
1 + η0 − 2

αj

Am

))
=

αj

Am
(3O − 4Nj) + (1 + η0) (2Nj −O) − O

A
α−j

Therefore:

αj =
2Nj −O

4Nj − 3O
Am(1 + η0) −

O

4Nj − 3O
α−j

Substituting in for α−j and simplifying gives:

αj =

(
(2Nj −O) (4N−j − 3O) −O(2N−j −O)

(4Nj − 3O) · (4N−j − 3O) −O2

)
Am(1 + η0)

The numerator simplifies to 8NjN−j − 6O(Nj + N−j) + 4O2 and the denominator simplifies to

2 ·
(
8NjN−j − 6O(Nj + N−j) + 4O2

)
. Therefore, the expression becomes:

αe,m
j =

1

2
Am(1 + η0) (52)

as reported in the text.

Derivation of Equation (16). Separated platform revenue is:

Rs
j(α) = η ·

(
O

2
αj ·

(
1 + η0 −

α1 + α2

2Am

)
+ (Nj −O)αj

(
1 + η0 −

αj

Am

))
The first-order condition is:

0 =
O

2

(
1 + η0 −

αj + α−j

2Am
− αj

2Am

)
+ (Nj −O)

(
1 + η0 − 2

αj

Am

)
=

αj

Am
(3O − 4Nj) + (1 + η0) (2Nj −O) − O

Am
α−j

10
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Therefore:

αe,s,i
j (α−j) =

2Nj −O

4Nj − 3O
Am(1 + η0) −

O

(4Nj − 3O)
α−j

=
2 − µj

4 − 3µj
Am(1 + η0) −

µj

4 − 3µj
α−j

where we factor out Nj from the numerator and denominator to express in terms of µj . Substituting

for α−j and simplifying yields:

αe,s,i
j =

(
(2Nj −O) (4N−j − 3O) −O(2N−j −O)

(4Nj − 3O) · (4N−j − 3O) −O2

)
Am(1 + η0) (53)

Percent change in ad load only depends on overlap statistics. Using Equations (52) and (53), the

percent increase in ad load in the separated equilibrium is:

αe,s,i
j

αe,m
j

− 1 = 2 ·
(

(2Nj −O) (4N−j − 3O) −O(2N−j −O)

(4Nj − 3O) · (4N−j − 3O) −O2

)
− 1

= 2 ·
(

(2 − µj) (4 − 3µ−j) − µj(2 − µ−j)

(4 − 3µj) · (4 − 3µ−j) − µjµ−j

)
− 1

This only depends on overlap statistics, proving the claim in the text.

A.6 Full equilibrium analysis for Section 1.5

This section analyizes the full model under various ownership structures. Throughout, we will

apply assumptions 1 and 2.

A.6.1 Social planner benchmark

The analysis follows Section A.3.1 pointwise. The planner chooses:

αsp = arg max
α

∑
i

U∗
i (T (α), n;α) +

∑
i

Am ·
(πω)maxˆ

x=pi(α)

xdH(x)

The first-order condition is:

0 =
∑
i

∂U∗
i (·;α)

∂αj
−
∑
i

Am · pi (α) · h (pi(α)) · ∂pi (α)

∂αj

Since:
∂pii (α)

∂αj
= − (Am · h (pi (α)))−1 ·

[
Tij + αj

∂Tij

∂αj
+ α−j

∂Ti,−j

∂αj

]

11
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the FOC becomes:

0 =
∑
i

∂U∗
i (·;α)

∂αj
−
∑
i

pi(α) ·
[
Tij + αj

∂Tij

∂αj
+ α−j

∂Ti,−j

∂αj

]

Solving for αj :

αj =
−
∑

i
∂U∗

i (·;α)
∂αj

−
∑

i pi(α) ·
(
Tij + α−j

∂Ti,−j

∂αj

)
∑

i pi(α) · ∂Tij

∂αj

(54)

This is conceptually identical to Equation (44) in Section A.3.1 in that the social planner balances

the aggregate marginal cost of additional ads on user welfare against the aggregate marginal benefit

of additional ads for advertiser welfare. Now, the planner accounts for user heterogeneity when

calculating aggregate benefits and costs.

A.6.2 Merged platform solution

The problem is:

max
α

∑
i

pi(α) ·α · T i(α)

The first-order conditions are:

0 =
∑
i

∂pi
∂αj

·α · T i(α) + pi(α) · Tij(α) + pi(α) ·α · ∂T i(α)

∂αj

Solving for αj :

αj =
−
∑

i
∂pi
∂αj

·α · T i(α) −
∑

i pi(α) ·
(
Tij(α) − α−j · ∂Ti,−j

∂αj
(α)
)

∑
i pi(α) · ∂Tij

∂αj
(α)

This is conceptually identical to Equation (46) balancing aggregate infra-marginal revenue gains

against aggregate marginal losses, except that aggregates are calculated accounting for variance in

user-level time use heterogeneity. As in Section 1.3, ad load may be higher or lower than the social

optimum in the separated equilibrium.

A.6.3 Separated platform solution, no duplication.

The problem is:

max
αj

∑
i∈Uj

pi(α) · αj · Tij(α)

The first-order conditions are:

0 =
∑
i

∂pi
∂αj

· αj · Tij(α) + pi(α) · Tij + pi(α) · αj ·
∂Tij

∂αj
(α)

12
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Solving for αj :

αj =
−
∑

i∈Uj

∂pi
∂αj

· αj · Tij(α) −
∑

i∈Uj
pi(α) · Tij∑

i∈Uj
pi(α) · ∂Tij

∂αj
(α)

This is similar to Equation (49). However, now the difference in incentives in the separated versus

merged equilibrium depend on user overlap. When all users are single-homers, the separated

equilibrium is identical to the merged equilibrium. As the share of multi-homers increases, two

differences emerge. First, as in Section 1.4.2, the Cournot externality increases, which increases

ad load in the separated equilibrium. Second, as in Section A.3.3, if platforms are substitutes,

user diversion reduces the incentive to withhold ad load in the merged equilibrium relative to the

separated equilibrium, which increases ad load in the merged equilibrium relative to the separated

equilibrium. In general, ad load can be higher or lower than in the merged equilibrium, depending

on overlap, user diversion, and price elasticity.

A.6.4 Separated platform solution, duplication.

The problem is:

max
αj

∑
i∈Uj

pij(α) · αj · Tij(α)

Taking the first-order condition and solving for αj :

αj =
−
∑

i∈Uj

∂pij
∂αj

· αj · Tij(α) −
∑

i∈Uj
pij(α) · Tij∑

i∈Uj
pij(α) · ∂Tij

∂αj
(α)

where:
∂pij
∂αj

= −
(
1 −O′

aj

)
· η

Am
· Tij −

pij(
1 −O′

aj

) ∂O′
aj

∂αj

This is similar to Equation (49). However, the Cournot externality represented in the first term

of Equation ((49) is replaced by the combination of the inframarginal effect and business stealing

effect, both of which increase ad load in the separated equilibrium as described in Section 1.4.2.

The absence of
∂Ti,−j

∂αj
reflects the same user-diversion force expressed above. This implies that ad

load may be higher or lower than the combined equilibrium social optimum.

However, since the separated equilibrium now has inefficiently duplicated ad impressions, com-

paring ad load versus the social planner benchmark is not sufficient to make welfare judgements.

For example, even if ad load were identical in the separated platform equilibrium with duplication

as in Equation (54), social welfare would be lower in the separated equilibrium because some ads

would be inefficiently duplicated, lowering advertiser surplus. See Section 5 for details.
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B Empirical Appendix

B.1 Duplication loss experiment.

B.1.1 Ad selection and ad design.

We developed 15 creatives for distinct products spanning five product categories to run as ads on

Meta platforms in February 2025. We selected products and categories to be representative of

typical advertisements on Meta. To do so, we first picked five top product categories and the top

three advertisers within each category by ad spending from the 2024 SensorTower Digital Market

Index (SensorTower 2024). We identified each resulting advertiser’s best-selling product and created

ads that linked to pages promoting or allowing users to purchase that product. To promote our

ads without violating Meta’s terms of use, we created a “product picks” Facebook page for each

product category.

Our product categories were shopping, consumer packaged goods, media and entertainment,

health and wellness, and food and dining services.11 The Facebook pages used to promote products

in each category were called, respectively, “The Shopping Spot,” “Everyday Care Essentials,”

“Media Roundup,” “Health and Wellness Essentials,” and “Culinary Crave.” These pages are public

and viewable on Facebook.12 Ad creatives used public-source advertising materials to approximate

campaigns consumers would likely see. Where relevant, ads link to a site to purchase the advertised

product, and otherwise link to a site describing the product in more detail.

Table A1 summarizes the companies, products, and creatives used within each category.

In the remainder of this section, we describe results from a pilot experiment run in January

2025 using Tide creatives.

B.1.2 Experimental design details and estimates.

We first recruited 10 audiences to target in campaigns. To recruit audiences, we ran campaigns

targeting US adults aged 18-65. To delineate audiences for retargeting, we used Meta’s “Custom

Audiences” feature. This feature allows advertisers to identify a set of users based on behaviors

or characteristics, such as whether they have previously interacted with another ad or visited an

advertisers’ website. We used a feature that builds an audience based on users who view at least

25% of a video ad. We made video ads using the 3-second GIFs of the creatives displayed in Table

A1, such that users for whom the ad is displayed for 0.75 seconds became part of an audience. We

also used the custom audience feature to ensure that the four audiences recruited for each ad were

non-overlapping by excluding users from being targeted once they became part of any of the other

audiences. The campaigns used to recruit custom audiences were run over four days in January

2025, with a daily budget of $2.

11The category with the fifth-highest spending is financial services. Because Meta restricts financial services
advertisements, we replace it with food and dining services, the sixth-highest category.

12Facebook page IDs are: 61565619873336 (Shopping Spot), 61565078579057 (Everyday Care Essentials),
61564728493259 (Media Roundup), 61565433650990 (Health and Wellness Essentials), and 61565407492274 (Culi-
nary Crave).
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We then targeted these audiences with follow-up campaigns that ran for one week and started

one week after the initial recruitment campaign began. Across audiences, we experimentally varied

ad intensity, ad frequency, and campaign duplication. We designated 5 audiences to target with

non-duplicated campaigns, and the remaining 5 to target with duplicated campaigns. Audiences

assigned to the non-duplicated condition were targeted by one follow-up campaign. Audiences

assigned to the duplicated condition were targeted by two identical follow-up campaigns to induce

duplication loss.

The 5 audiences within the non-duplicated and duplicated conditions were assigned to one of

five treatments consisting of a daily campaign budget and campaign objective. These conditions

were: (i) “low spend, clicks objective”, (ii) “mid spend, clicks objective”, (iii) “mid spend, reach

objective”, (iv) “high spend, clicks objective”, and (v) “high spend, reach objective.” Low, mid,

and high spend campaigns received a daily budget of $2, $8, and $12 per day. Campaigns with

a clicks objective were given the Meta performance goal of maximizing the number of link clicks,

wheres campaigns with a reach objective were given the Meta performance goal of maximizing daily

unique reach.

For each campaign, we measured the click-through rate, number of impressions, and campaign

reach. We also gathered Meta’s estimates of the combined unique reach of campaigns assigned

to the duplicated condition, which, along with data on unique reach of each individual campaign,

allows us to back out the fraction of a campaign audience that is impressed by both duplicated

campaigns. We estimate campaign frequency as the ratio of number of impressions and reach, and

campaign intensity as the fraction of the audience impressed by the follow-up campaign.

Using these data, we estimate coefficients in the specification, where a indexes one of the five

treatments for audiences described above:

RatioCTRa = β0 + β1OverlapRatioa + β2FreqRatioa + β3IntensityRatioa + ϵa (55)

where RatioCTRa is the ratio of the impression-weighted average click-through rate in dupli-

cated campaigns and the click-through rate in non-duplicated campaigns; OverlapRatioa is the

impression-weighted average fraction of the audience impressed by both campaigns in the du-

plicated condition; FreqRatioa is the ratio of the impression-weighted average frequency in the

duplicated campaigns to ad frequency in non-duplicated campaigns; and IntensityRatioa is the

ratio of the impression-weighted average intensity in the duplicated campaigns to ad intensity in

the non-duplicated campaigns. After estimating coefficients, we estimate ̂RatioCTRc by setting

OverlapRatioa = 1 and the other regressors at their impression-weighted average values. We then

form L̂ ≡ ̂RatioCTRa − 1
2 .
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Table A1: Duplication Loss Experiment Creatives

(a) Shopping ads

Company Amazon Temu Shein

Product Fire Stick Shopping Shopping

Ad creative

(b) Consumer packaged goods ads

Company Proctor & Gamble Unilever Nestle

Product Tide Pods Dove Nescafe

Ad creative

(c) Media and entertainment ads

Company Disney NBC Universal Amazon

Product Disney+ Peacock Amazon Prime

Ad creative
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Table A1: Duplication Loss Experiment Creatives, cont.

(d) Health and wellness ads

Company L’Oreal Estee Lauder Olay

Product Revitalift moisturizer Night repair serum Regenerist moisturizer

Ad creative

(e) Food and dining services ads

Company Sonic McDonald’s Wendy’s

Product Sonic’s $1.99 menu $5 meal deal Biggie Bag

Ad creative

Notes: This figure describes top companies and products used to develop ad creatives for the
duplication experiment. Screen captures of ad creatives are for the video ads used to initially
recruit custom audiences, as described in Section B.1.2, but are identical to the static ads used for
follow-up campaigns.

B.2 Standard Errors

The covariance matrix of Θis

Σ = H−1 ·Ωh ·H−1 (56)

where H is:

H = R′
ΘWRΘ (57)

Because
√
n(δ̂ − δ) →d N(0,Ωδ), according to delta method, Ωh is
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√
nh(ΘD,π) →d N(0,Ωh) = N(0,R′

ΘWRδΩδR
′
δWRΘ) (58)

The matrices RΘ and Rδ represent the Jacobian matrices with respect to the parameters Θ to be

estimated and the empirical moments δ:

RΘ =
∂

∂ΘD
h(Θ, δ) (59)

Rδ =
∂

∂δ
h(Θ, δ) (60)

A consistent estimator of Σ is:

Σ̂ = Ĥ−1 · Ω̂h · Ĥ−1 (61)

where Ω̂h is:

Ω̂h = R̂
′
ΘŴ R̂δΩ̂δR̂

′
δŴ R̂Θ (62)

and Ĥ is:

Ĥ = R̂
′
ΘŴ R̂Θ (63)

and Ω̂δ is:

Ω̂δ =


Ω̂B

Ω̂D

Ω̂G

Ω̂P

Ω̂E


where Ω̂B is the sample covariance matrix for

({
T̂C
kj

}
k,j

,
{
T̂C
j , T̂B

j

}
j

)
; Ω̂D is the sample covariance

matrix for

({
T̂C
mj

}
j
,
{
T̂Dj′

mj

}
j

)
, Ω̂G is the variance of ∂̂T

∂α
α
T , Ω̂P is the sample covariance matrix for(

P̂F

)
, and Ω̂E is the sample covariance matrix for

({
Ê2
kj

}
j,k

, ÊmFI

)
. This assumes no covariance

in moments across experiments – for example, between DA, FIES, and Goli et al. (2018).

Since our system is just-identified, we use Ŵ = I. We compute the Jacobians of h(·) using

MATLAB symbolic differentiation.
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C Counterfactuals Appendix

C.1 Welfare formulas

Let O be the number of consumers with positive time use on both platforms. Consumer surplus,

as a function of T i, is:

∑
i

Ui(T i) = O ·

∑
j

(ξmj − γαj)Tmj + E[εijeij |k = m] − σj/2
(
T 2
mj + E2

mj

)
+ ρ (Tm1Tm2 + Em12)


+
∑
j

(Nj −O) ·
[
(ξsj − γαj) · Tsj + E[εijeij |k = s] − σj/2

(
T 2
sj + E2

sj

)]
Proudcer surplus in the merged equilibrium is:

Rm(α) = η ·
∑
i

α · T i ·
(

1 + η0 −
α · T i

Am

)

= η ·O ·

[
α · Tm · (1 + η0) −

(α · Tm)2 +
(
α2
1E2

s1 + α2
2E2

s2 + 2 · α1α2Em12

)
Am

]

+ η ·
∑
j

(Nj −O) ·

αjTsj · (1 + η0) −
α2
j

(
T 2
sj + E2

sj

)
Am

 (64)

Producer surplus in the separated equilibrium is:

Rs
j(α) = η ·

(
1 − ζjO

′
aj(α)

)
·
∑
i

αjTij ·
(

1 + η0 −
αjTij

Am

)

= η ·
(
1 − ζjO

′
aj(α)

)
·O ·

αjTmj(1 + η0) −
α2
j

(
T 2
mj + E2

mj

)
Am


+ η ·

(
1 − ζjO

′
aj(α)

)
· (Nj −O) ·

αjTsj(1 + η0) −
α2
j

(
T 2
sj + E2

sj

)
Am


Advertiser surplus in the merged equilibrium is:

ASm(αm) =
∑
i

Am ·
ˆ (πω)max

pi(αm)
xdH(x)

=
∑
i

[
A

2η
η2 (1 + η0)

2 − A

2η
p2i −α · T i · pi

]
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We implement this by calculating:

∑
i

A

2η
η2 (1 + η0)

2 = N
A

2η
η2 (1 + η0)

2 ;

∑
i

p2i =
∑
i

η2 ·
(

1 + η0 −
α · T i

Am

)2

= η2 ·O ·

[
(1 + η0)

2 − 2 · 1 + η0
Am

·α · Tm +
(α · Tm)2 +

(
α2
1E2

s1 + α2
2E2

s2 + α1α2Em12

)
(Am)2

]

+ η2 ·
∑
j

(Nj −O) ·

(1 + η0)
2 − 2 · 1 + η0

Am
· αjTsj +

α2
j

(
T 2
sj + E2

sj

)
(Am)2

 ;

∑
i

α · T i · pi = Rm(α).

where Rm(α) is given by Equation (64).

To find advertiser surplus in the separated equilibrium, first calculate advertiser surplus with

no overlap, then subtract out lost surplus from overlap. Advertiser surplus without overlap is:

AS′
j(α) =

∑
i∈Uj

Am ·
ˆ (πω)max

pij(α)
xdH(x)

=
∑
i∈Uj

 A

2η
η2(η0 + 1)2 − A

2η

(
pij

1 − ζjO′
aj

)2

− αjTijpij
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We implement this by calculating:

∑
i∈Uj

A

2h
η2(η0 + 1)2 = Nj ·

A

2h
η2(η0 + 1)2

∑
i∈Uj

p2ij(
1 − ζjO′

aj

)2 =
∑
i∈Uj

η2 ·
(

1 + η0 −
αjTij

Am

)2

= η2 ·O ·

(1 + η0)
2 − 2 · 1 + η0

Am
αjTmj +

α2
j ·
(
T 2
mj + E2

mj

)
(Am)2


+ η2 · (Nj −O) ·

(1 + η0)
2 − 2 · 1 + η0

Am
αjTsj +

α2
j ·
(
T 2
sj + E2

sj

)
(Am)2


∑
i∈Uj

αjTijpij = η ·
(
1 − ζjO

′
aj

)
·
∑
i∈Uj

αjTij ·
(

1 + η0 −
αjTij

Am

)

= η ·
(
1 − ζjO

′
aj

)
·O ·

αjTmj(1 + η0) −
α2
j

(
T 2
mj + E2

mj

)
Am


+ η ·

(
1 − ζjO

′
aj

)
· (Nj −O) ·

αjTsj(1 + η0) −
α2
j

(
T 2
sj + E2

sj

)
Am


To compute advertiser surplus given overlap, first note that an advertiser buys enough clicks on j

so that they will serve an ad to all i where:

pij ≤ πaωia

(
1 − ζj

∂Oa

∂qj

)
⇐⇒ H−1

i

(
1 − αjTij(α)

A

)
≤ πaωia

Overlap occurs if the advertiser would buy enough clicks to serve i on both j and −j. Define

p
i
(α) = maxj H

−1
i

(
1 − αjTij(α)

A

)
. The surplus lost due to overlap for person i is

∑
i

ˆ (πω)max

p
i
(α)

xdH(x) = Am · E
[
πa(ωia − ωia)|πaωia ≥ p

i
(α)
]

= Am · E
[
(1 − κ · ρi) · πaωia|πaωia ≥ p

i
(α)
]

= Am ·
(

1 − κ · E
[
ρi|πaωia ≥ p

i
(α)
])

· E
[
πaωia|πaωia ≥ p

i
(α)
]

=
A

2η
· (1 − κ · E[ρi]) ·

[
η2(1 + η0)

2 −
(
p
i
(α)
)2]

In this derivation, the third line follows from the second because ρi is a linear transformation of

pmi = H−1
i

(
1 − α·T i(α)

Am

)
, which is uncorrelated with πaωia by Assumptions 1 and 2. This also

implies that conditioning on πaωia ≥ p
i
(α) does not change the expectation of ρi, in which case

hte fourth line follows from the third.
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Total overlap becomes:

ASo(α) = (1 − κ · E[ρi]) ·
∑
i∈Um

A

2η

[
η2(1 + η0)

2 −
(

max
j

η ·
(

1 + η0 −
αjTij(α)

A

))2
]

(65)

where:

E[ρi] =
1

(1 + η0)
·
(

1 + η0 −
α · Tm(α)

Am

)
Given heterogeneous time use among multi-homers, it is challenging to get an analytical expression

for the above. Instead, we directly integrate by following these steps:

1. Write a function mapping from parameters of time use heterogeneity to p
i
(α;Ξ).

2. Numercially integrate under this function using our grid describing the distribution of Ξ.

3. Use Equation (65) to calculate ASo(α).

Finally, we calculate ASs
j (α) =

∑
j AS

′
j(α) −ASo(α).

C.2 Miscellaneous formulas

C.2.1 Average price per impression

Average price per impression on platform j is:

pj =

∑
i∈Uj

pijαjTij∑
i∈Uj

αjTij

The denominator is straightforward to calculate. In the merged equilibrium, the numerator is:

∑
i∈Uj

piαjTij =
∑
i∈Uj

η ·
(

1 + η0 −
α · T i

Am

)
αjTij

= O · η ·

(1 + η0)αjTmj −
α2
j

(
T 2
mj + E2

mj

)
+ αjα−j (TmjTm,−j + E12)

Am

 (66)

+ (Nj −O) · η ·

(1 + η0)αjTsj −
α2
j

(
T 2
sj + E2

sj

)
Am



22



Online Appendix Digital Media Mergers

In the separated equilibrium, the numerator is:

∑
i∈Uj

pijαjTij = (1 − ζO′
aj) · η ·

∑
i∈Uj

(
1 + η0 −

αjTij

Am

)
αjTij

= (1 − ζO′
aj) · η ·O ·

(1 + η0)αjTmj −
α2
j

(
T 2
mj + E2

mj

)
Am


+ (1 − ζO′

aj) · η · (Nj −O) ·

(1 + η0)αjTsj −
α2
j

(
T 2
sj + E2

sj

)
Am


C.2.2 Formula for ζj(α)

By definition:

ζj(α) = 1 − κ · pi(αm)/(η · (1 + η0)

= 1 − κ

η · (1 + η0)

Ei [Tij(α) · pmi |i ∈ Um]

Tmj

Since:

O−1
∑
i∈Um

Tij(α) · pmi = O−1
∑
i∈Um

[
η ·
(

1 + η0 −
αm · T i(α

m)

Am

)
· Tij(α)

]

= η ·

(1 + η0) · Tmj(α) −
αm
j

(
Tmj(α

m)Tmj(α) + E2
mj

)
+ αm

−j (Tm,−j(α
m)Tmj(α) + E12)

Am


the formula for ζj(α) is

ζj(α) = 1− κ

1 + η0
·T−1

mj

(1 + η0) · Tmj(α) −
αm
j

(
Tmj(α

m)Tmj(α) + E2
mj

)
+ αm

−j (Tm,−j(α
m)Tmj(α) + E12)

Am


(67)

C.2.3 Aggregate elasticity of ad demand in merged equilibrium

Rewrite the merged platform problem as:

max
α

∑
i

pi(α · T i(α)) ·α · T i(α)
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In this notation, the FOC with respect to αj is

0 =
∑
i

∂

∂αj
(α · T i(α)) ·

(
pi + α · T i(α) · ∂pi

∂ (α · T i(α))

)
=
∑
i

(
Tij(α) + α · ∂T i

∂αj

)
·
(
pi −α · T i(α) · η

Am

)
Rearranging:

−
∑
i

α · ∂T i

∂αj
=
∑
i

Tij(α) ·
(
pi −α · T i(α) · η

Am

)
(68)

This illustrates the typical two-sided market intuition that the merged platform balances the elas-

ticity of time use (LHS) with the elasticity of demand from advertisers (RHS). Define the aggregate

elasticity of ad demand on platform j as:

εDj (α) ≡ −Am

η

∑
i Tij(α) · pi∑

i Tij(α) ·α · T i(α)
(69)

where we refer to εD(α) as an elasticity because when users are homogeneous and the market

is one-sided (users don’t care about ads), the expression reduces to εD(α) = ∂ log(α·T i(α))
∂ log p , and

quantity choice follows the inverse elasticity rule. The platform cares about the user side of the

market as well; RHS of equation (68) is positive, which means the aggregate elasticity of ad demand

is above one. The more elastic the user side of the market is, the more above one is the absolute

value of the aggregate elasticity of advertiser demand.

To compute equation (69), the numerator is the same as equation (66), divided through by αj .

The denominator is:∑
i∈Uj

α · T i(α) · Tij(α) = O ·
[
αj ·

(
T 2
mj + E2

mj

)
+ αj′ ·

(
TmjTmj′ + E12

)]
+ (Nj −O) ·

[
αj ·

(
T 2
sj + E2

sj

)]
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C.3 Additional Counterfactual Figures

Figure A1: Counterfactual Ad Load Sensitivity: User-Side Parameters
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(a) Platform Substitution
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(b) Ad Disutility

Notes: This figure presents the impact of alternative user-side parameters on estimates of the total surplus
effects of a Facebook-Instagram separation. We perturb the parameter on the horizontal axis, compute ad
load in the new merged and separated equilibria, and and plot ad load on each platform relative to its
value in the merged equilibrium under baseline parameter estimates. Higher ρ indicates that platforms are
stronger substitutes, and higher average γj implies that users are more averse to ad load.
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Figure A2: Counterfactual Total Surplus Sensitivity: User-Side Parameters
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(b) Loss from Duplicated Impressions

Notes: This figure presents the impact of alternative advertiser-side parameters on estimates of the total
surplus effects of a Facebook-Instagram separation. We perturb the parameter on the horizontal axis,
compute ad load in the new merged and separated equilibria, and plot ad load on each platform relative to
its value in the merged equilibrium under baseline parameter estimates. Higher overlap maintains the ratio
of single-homers on Facebook to Instagram, and varies the total number of multi-homers as a fraction of total
users. Higher average ζj indicates a greater loss from duplication, with the range of plotted ζj generated
from κ ∈ [0, 1].
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