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The web search market

Google dominates web search This attracted regulatory scrutiny
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Research questions

1. Why is Google’s market share so high?
▶ True quality differences?

▶ Driven by economies of scale in data?

▶ Quality misperceptions?

▶ Default effects (switching costs and/or inattention)?

2. What would be the effects of competition policy?
▶ Active choice screens?

▶ Changing defaults?

▶ Requiring Google to share data with competitors?

This paper:model, field experiment, click-and-query data, counterfactuals.
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Demand model: overview

Consumer i chooses search engine j ∈ {Google,Bing} during periods t
▶ Search engine used at time t is xit

(True) flow utility is

u∗i jt = ζ∗j︸︷︷︸
Quality

+ ηp jt︸︷︷︸
Payments

+ εi j
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Quality:
▶ Search result relevance, # of ads, interface, etc.
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Demand model: quality perceptions

Search engines are experience goods.

▶ User i’s beliefs about quality at time t are such that

Eit
[
ζ j
]
=

ζ
∗
j if i has experienced j ← True quality

ζ̃ j otherwise ← (Possibly) misperceived quality

Perceived flow utility is
ui jt = Eit

[
ζ j
]︸︷︷︸

Perceived
quality

+ ηp jt︸︷︷︸
Payments

+ εi j

Assume users unaware they misperceive quality:
▶ No benefits from exploration
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Demand model: inertia

Default search engine at time t = 0 is determined by browser (Chrome→ Google, Edge→ Bing)

▶ Users perceive quality of browser-determined default correctly

Defaults influence choices via two inertia channels:
▶ Inattention (affects infra-marginal users)

▶ If inattentive, stick with previous choice (xit = xi,t−1)
▶ Fraction ϕ: permanently inattentive
▶ Fraction 1 − ϕ: attentive with probability π (iid over periods)

▶ Switching cost σ (affects marginal users)

Choice if attentive:
xit = arg max

j∈{B,G}

{
Eit[ζ j] + εi j − σ1{ j ̸= xi,t−1}

}
▶ No continuation value since anticipate never switching again
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Demand model: implications

Steady-statemarket share of Bing among Chrome users:

(1 − ϕ)F∆ε
(
∆ζ̃ − σ

)
,

where F∆ε(·) is the CDF of the error and

∆ζ̃ = ζ̃B − ζ
∗
G = (ζ̃B − ζ∗B) + (ζ∗B − ζ

∗
G).

Google market share can be high for four reasons:

1. True quality (ζ∗B − ζ
∗
G)

2. Quality misperceptions (ζ̃B − ζ∗B)

3. Switching costs (σ)

4. Inattention (ϕ)
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Experiment overview

Recruit 2,354 people on Prolific in Mar/Apr ’24
▶ Sample: US adults on desktop

▶ Use only one browser: Edge or Chrome
▶ Usually use either Google or Bing

▶ Survey 1 (immediately):
▶ Demographics
▶ Opinions about search engines
▶ Install browser extension
▶ Treatments

▶ Survey 2 (14 days later): varies by treatment

Search Extension

1. Records every time a search engine is used
▶ Starting 20 days before Survey 1

2. Alters search result page
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Experiment Treatments

Control (C)
▶ Placebo surveys

Active Choice (A)
▶ Ask for & implement preferred default

▶ Verify they got to choice screen

Switch Bonus (S)
▶ Offer {$1, $10, $25} to switch for 14d
▶ After 14d, make active choice

Default Change (D)
▶ Offer $10 to change default for 2d
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Details
Day 0

Placebo survey

Survey 2Survey 1

Control (4%)

Active Choice (10%)

Default Change (10%)

Switch 
Bonus

$25 (6%)

$10 (64%)

$1 (6%)

Active choice

Day 14Day -20 Day 56
Data Collection 

Begins
Data Collection 

Ends

Heads up: model is at browser-level, experiment at search-engine level. To map, need
assumption: if use SE before experiment & we pay you to use SE, you continue to use SE.
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Identification for Chrome users

t

Bing
Share

0
Control

Default Change

Active Choice

Switch Bonus

Switch Bonus
Price
sensitivity (η)

Switching cost (σ)
& permanent
inattention (ϕ)

Switching
cost (σ)

Learning (ζ∗B − ζ̃B)

Perceived quality
difference (∆ζ̃)

Attention
probability (π)

Switching cost (σ) &
permanent inattention (ϕ)

Day 0 Day 14

Identifying σ and ϕ: Diff. between Active Choice and Control almost unaffected by ϕ More
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Market shares for Chrome users
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Control: no effect of placebo intervention
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Market shares for Chrome users

Incentive period

(S)
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Switch Bonus: High Bing share during incentive→ Users are price sensitive
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Market shares for Chrome users
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Switch Bonus: Bing share stays high after incentive→ Users update posively about Bing
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Market shares for Chrome users

Incentive period
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Learning in Switch Bonus group (baseline Google)
1. Relative preference for Bing before (Survey 1) and after (Survey 2) the switch:

2.We surveyed stayers. Quotes:
▶ “I have learned I overall enjoy [Bing] more.”

▶ “I found that I liked the results I am getting in Bing”

▶ “I realized Bing was not as bad as I thought it was.”

3.Multiple Choice:
▶ 64.1% – Bing better than expected

▶ 59% – they got accustomed,

lorem ipsum
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Price response

Bing market shares during incentive period:

Active
▶ Bing market share ≈ 1.86%

Switch ($1)
▶ Bing market share ≈ 31.5%

Switch ($10)
▶ Bing market share ≈ 64.4%

Switch ($25)
▶ Bing market share ≈ 74.1%
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Ranking Degradation

Control
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Ranking Degradation: Effects

(1)

(2) (3)

Dep. var.: Organic click-
through rate

∆ Relevance rating
(-2 to +2 scale)

Bing
share

Ranking Degradation -0.077∗∗∗

-0.311∗∗∗ -0.034

(0.028)

(0.072) (0.029)

Constant 0.347∗∗∗

0.241∗∗∗ 0.244∗∗∗

(0.017)

(0.063) (0.027)

1. Reduced relevance of search result pages as measured by click-through rate.

2. Worsened participants’ perception of result relevance.

3. Had only limited impact on participant choices.
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Demand estimation results

Description Formula Estimate SE

Permanent inattention ϕ 0.34 0.06
Attention probability π 0.83 0.15

Price response η 0.33 0.09

Switching cost σ $0.004 0.007
Perceived Bing preference ∆ζ̃ -$3.06 0.80
Learning ζ∗B − ζ̃B $0.26 0.18
Ad load response -$0.13 0.12
Relevance response -$0.10 0.10

For presentation, Chrome users only. t

Bing
Share

0
Control

Default

Active Choice

Switch Bonus
η

σ, ϕ

ζB − ζ̃B

σ, ϕ

∆ζ̃

π

Survey 1 Survey 2

▶ 33% of users are permanently inattentive
▶ If users make active choice, Bing payment of $3.06 per two weeks equalizes market shares
▶ If perceptions were corrected, required payment would shrink to $2.80
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Returns to Data

More users (and data)

?

=⇒ better ranking

✓

=⇒ more users

Approach

1. Estimate how any given query’s click-through rate (CTR) increases with # of impressions

2. Integrate over query frequency distribution (probably effect concentrates on long tail)

Internal Microsoft Bing data
▶ Random sample of 43,991 new queries (0 searches in 2021, > 100 in 2022)
▶ For each impression of each query: timestamp, top result id & click dummy

Conclusion
▶ If Bing had access to Google’s data, CTR would increase from 23.5% to 24.8%.

(Caveats: observational data, estimated only off ‘new’ search terms, no cross-query learning.)
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Counterfactuals

Direct effects
(fixed quality)

Equilibrium effects
(endogenous quality)

Description Switching cost
& inattention?

Misper-
ceptions?

Google
share (%)

CS gain
($/year)

Google
share (%)

CS gain
($/year)

Status Quo ✓ ✓ 88.9 0.00

No Frictions ✗ ✗ 73.8 6.01
+ Data Sharing

Choice Screen ✗ ✓ 87.6 0.09
Correct Perceptions ✓ ✗ 78.4 0.46

+ Data Sharing
Bing Default ✓ ✓ 48.9 -70.92

+ Delayed Choice Screen ✓ ✓ 72.1 0.06
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Equilibrium effects
(endogenous quality)

Description Switching cost
& inattention?

Misper-
ceptions?

Google
share (%)

CS gain
($/year)

Google
share (%)

CS gain
($/year)

Status Quo ✓ ✓ 88.9 0.00
No Frictions ✗ ✗ 73.8 6.01

+ Data Sharing
Choice Screen ✗ ✓ 87.6 0.09
Correct Perceptions ✓ ✗ 78.4 0.46

+ Data Sharing
Bing Default ✓ ✓ 48.9 -70.92

+ Delayed Choice Screen ✓ ✓ 72.1 0.06

Eliminating demand-side frictions reduces Google market share (with moderate CS gain).
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Status Quo ✓ ✓ 88.9 0.00
No Frictions ✗ ✗ 73.8 6.01

+ Data Sharing

Choice Screen ✗ ✓ 87.6 0.09

Correct Perceptions ✓ ✗ 78.4 0.46
+ Data Sharing

Bing Default ✓ ✓ 48.9 -70.92
+ Delayed Choice Screen ✓ ✓ 72.1 0.06

An active choice screen leaves shares unchanged, but gets most CS gains.
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(endogenous quality)

Description Switching cost
& inattention?

Misper-
ceptions?

Google
share (%)

CS gain
($/year)
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Status Quo ✓ ✓ 88.9 0.00
No Frictions ✗ ✗ 73.8 6.01

+ Data Sharing

Choice Screen ✗ ✓ 87.6 0.09
Correct Perceptions ✓ ✗ 78.4 0.46

+ Data Sharing
Bing Default ✓ ✓ 48.9 -70.92

+ Delayed Choice Screen ✓ ✓ 72.1 0.06

Correcting perceptions lowers Google share, but with small CS change.
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Counterfactuals

Direct effects
(fixed quality)

Equilibrium effects
(endogenous quality)

Description Switching cost
& inattention?

Misper-
ceptions?

Google
share (%)

CS gain
($/year)

Google
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CS gain
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Status Quo ✓ ✓ 88.9 0.00
No Frictions ✗ ✗ 73.8 6.01

+ Data Sharing

Choice Screen ✗ ✓ 87.6 0.09
Correct Perceptions ✓ ✗ 78.4 0.46

+ Data Sharing

Bing Default ✓ ✓ 48.9 -70.92

+ Delayed Choice Screen ✓ ✓ 72.1 0.06

Making Bing the default lowers Google share, but at a large CS loss.
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Counterfactuals

Direct effects
(fixed quality)

Equilibrium effects
(endogenous quality)

Description Switching cost
& inattention?

Misper-
ceptions?

Google
share (%)

CS gain
($/year)

Google
share (%)

CS gain
($/year)

Status Quo ✓ ✓ 88.9 0.00
No Frictions ✗ ✗ 73.8 6.01

+ Data Sharing

Choice Screen ✗ ✓ 87.6 0.09
Correct Perceptions ✓ ✗ 78.4 0.46

+ Data Sharing

Bing Default ✓ ✓ 48.9 -70.92
+ Delayed Choice Screen ✓ ✓ 72.1 0.06

Delayed choice screen: shows up two weeks after browser installation
→ Reduces Google share at a small CS loss
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Counterfactuals

Direct effects
(fixed quality)

Equilibrium effects
(endogenous quality)

Description Switching cost
& inattention?

Misper-
ceptions?

Google
share (%)

CS gain
($/year)

Google
share (%)

CS gain
($/year)

Status Quo ✓ ✓ 88.9 0.00 88.9 0.00
No Frictions ✗ ✗ 73.8 6.01 73.5 6.02

+ Data Sharing

Choice Screen ✗ ✓ 87.6 0.09 87.6 0.09
Correct Perceptions ✓ ✗ 78.4 0.46 78.2 0.47

+ Data Sharing

Bing Default ✓ ✓ 48.9 -70.92 48.5 -70.81
+ Delayed Choice Screen ✓ ✓ 72.1 0.06 72.0 0.08

Data feedback has only minor effects
→ Small demand response to result relevance + small effect of data on result relevance
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Counterfactuals

Direct effects
(fixed quality)

Equilibrium effects
(endogenous quality)

Description Switching cost
& inattention?

Misper-
ceptions?

Google
share (%)

CS gain
($/year)

Google
share (%)

CS gain
($/year)

Status Quo ✓ ✓ 88.9 0.00 88.9 0.00
No Frictions ✗ ✗ 73.8 6.01 73.5 6.02

+ Data Sharing 73.1 6.12
Choice Screen ✗ ✓ 87.6 0.09 87.6 0.09
Correct Perceptions ✓ ✗ 78.4 0.46 78.2 0.47

+ Data Sharing 77.9 0.56
Bing Default ✓ ✓ 48.9 -70.92 48.5 -70.81

+ Delayed Choice Screen ✓ ✓ 72.1 0.06 72.0 0.08

Data sharing only has minor effects

26/27



Counterfactuals

Direct effects
(fixed quality)

Equilibrium effects
(endogenous quality)

Description Switching cost
& inattention?

Misper-
ceptions?

Google
share (%)

CS gain
($/year)

Google
share (%)

CS gain
($/year)

Status Quo ✓ ✓ 88.9 0.00 88.0 0.00
No Frictions ✗ ✗ 73.8 6.01 72.09 6.04

+ Data Sharing 71.9 6.31
Choice Screen ✗ ✓ 87.6 0.09 87.5 0.09
Correct Perceptions ✓ ✗ 78.4 0.46 77.9 0.47

+ Data Sharing 77.1 0.72
Bing Default ✓ ✓ 48.9 -70.92 47.7 -70.61

+ Delayed Choice Screen ✓ ✓ 72.1 0.06 71.4 0.11

Data sharing only has minor effects – even at 95% CI boundary of our estimate of demand
response to quality
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Conclusion & Caveats

Takeaways
▶ Defaults are effective

▶ ∼ 1/3 of users are permanently inattentive
▶ Prevent users from learning about other search engines

▶ How can regulators reduce Google’s market share?
▶ Choice screens alone do not move the needle (Decarolis, Li, and Paternello; 2023)
▶ Changing the default does, but w/ large decrease in CS
▶ Temporarily switching the default & delayed choice screen may work

▶ Economies of scale and data sharing have small effects

Caveats
▶ Desktop users, sample may not be representative
▶ Returns-to-scale analysis is observational
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Thank you!
questions, comments, concerns
lmusolff@wharton.upenn.edu



Identification: Separating switching costs σ and permanent inattention ϕ

Key idea: Switching costs and permanent inattention affect ∆1 and ∆2 quite differently

Effect of permanent inattention ϕ: details

▶ In C, only affects people who would like to overrule
default and use Bing (< 5%)

▶ In D, affects all users who accepted payment but
would want to switch back (∼ 50%)

▶ Effect on ∆2 much larger than on ∆1.

Effect of switching cost σ: details

▶ σ shifts utilities in C and D by the same amount
▶ Affect ∆1 and ∆2 approx. symmetrically

▶ as long as similar densities of marginal users

t
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Identification: Separating switching costs σ and permanent inattention ϕ

Focus on Chrome. Suppose σ = 0.

∆1 = Fϵ (∆ζ̃) − (1 − ϕ)Fϵ (∆ζ̃)
= ϕFϵ (∆ζ̃)

∆2 = ϕ + (1 − ϕ)Fϵ (∆ζ∗) − Fϵ (∆ζ∗)
= ϕ − ϕFϵ (∆ζ∗)

If Google is good, Fϵ (∆ζ̃) ≈ Fϵ (∆ζ∗) ≈ 0.

Hence, ∂∆1
∂ϕ = 0. But ∂∆2

∂ϕ = 1. t
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Identification: Separating switching costs σ and permanent inattention ϕ

Focus on Chrome. Suppose ϕ = 0.

∆1 = Fϵ (∆ζ̃) − Fϵ (∆ζ̃ − σ)

∆2 = Fϵ (∆ζ∗ + σ) − Fϵ (∆ζ∗)

If learning is small relative to mean
preferences, ∆ζ̃ ≈ ∆ζ∗.
∂∆1
∂σ = fϵ (∆ζ̃ −σ) and ∂∆2

∂σ = fϵ (∆ζ∗ +σ).

Hence, ∂∆1
∂σ ≈

∂∆2
∂σ for small σ.
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