
A Framework for Detection, Measurement,
and Welfare Analysis of Platform Bias∗

Imke Reimers
Cornell University and ZEW

Joel Waldfogel
University of Minnesota, NBER, ZEW

March 28, 2024

Abstract

Regulators are responding to growing platform power with curbs on platforms’ poten-
tially biased exercise of power, creating urgent needs for both a workable definition of
platform bias and ways to detect and measure it. Platform search rankings present
an important mechanism for possible self-preferencing; and we develop a simple equi-
librium framework in which consumers choose among ranked alternatives, while the
platform chooses product display ranks based on product characteristics and prices.
We define the platform’s ranks to be biased if they deliver outcomes that lie below
the frontier that maximizes a weighted sum of seller and consumer surplus. This
framework leads to two bias testing approaches, which we compare using Monte Carlo
simulations, as well as data from Amazon, Expedia, and Spotify. We then illustrate
the use of our structural framework directly, producing estimates of both platform bias
and its welfare cost. Policies allowing researchers access to platform data would allow
easy implementation of our approach in contexts important to policy makers.
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Introduction

Increasingly powerful platforms with interests in the products they sell are facing regulatory

scrutiny for giving their own products preferential treatment relative to those of other sup-

pliers, a practice known as “self-preferencing.”1 While self-preferencing can operate through

various channels, the Digital Markets Act (DMA) specifically forbids “gatekeeper” platforms

from engaging “in any preferential treatment in ranking.” Prohibiting self-preferencing

sounds simple and appealing, but its definition and measurement are not straightforward

since it is not clear what rankings platforms’ own products should receive in the absence of

bias.2 Opinions vary widely on whether “platform bias” is even a problem meriting regula-

tory attention. Some observers (e.g., Dubé, 2022) liken it to ubiquitous consumer-friendly

store brands. Others, such as Senator Elizabeth Warren and the Indian antitrust authorities,

are worried about large market shares and favor outright bans on Amazon’s sales of its own

products.3 Either way, the advent of new regulations has created a pressing need for ways

to detect, measure, and evaluate the welfare consequences of biased rankings in general and

self-preferencing in particular.

We attempt to facilitate the policy evaluation that new regulations will require with

a simple equilibrium model that gives rise to a workable definition of platform ranking

bias. The model pairs consumer demand for platform-ranked products with the platform’s

choice of (potentially biased) rankings. We define unbiased rankings as those giving rise to

a welfare frontier between maximal consumer and maximal producer surplus. A platform

obtaining, say, higher commissions from the sale of some subset of the products on offer

1For example, the EU’s Digital Markets Act forbids gatekeepers from giving preferential treatment to
their own products; and the proposed American Innovation and Choice Online Act would forbid platforms
from preferencing “the products, services, or lines of business of the covered platform operator over those of
another business user on the covered platform.” See https://www.congress.gov/bill/117th-congress/

senate-bill/2992/text.
2Peitz (2022) and Peitz (2023) discuss the challenge of interpreting self-preferencing under the DMA.
3See https://www.nytimes.com/2019/03/08/us/politics/elizabeth-warren-amazon.html and

https://www.nytimes.com/2020/01/13/technology/amazon-bezos-india-antitrust.html.
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(for example its own products) might rank those products “too high,” increasing its own

revenue at the expense of overall seller and consumer surplus. Accordingly, we define bias as

preferential treatment of platform-favored products which delivers outcomes interior to the

welfare frontier.

We put our theoretical framework to three uses. First, we use the framework to produce a

workable definition of platform bias: Bias exists when the platform ranks one set of products

too high relative to the interests of consumers and sellers. Second, we use the framework

to give a theoretical foundation to the ways in which researchers might detect and measure

bias. These include both “conditioning on observables” (COO) and “outcome-based” (OB)

approaches. In the COO approach, one regresses platform ranks on a platform indicator

and controls and measures self-preferencing with the platform rank differential. The OB

approach infers bias from differential post-ranking sales outcomes for platform and non-

platform products assigned the same rank by the platform. Third, we discuss and illustrate

direct estimation of a structural model derived from our framework, which supports not only

detection and quantification of bias but also its welfare analysis.

While data requirements for detecting platform ranking bias are relatively light, imple-

menting our structural model imposes a heavier burden, requiring data on platform rankings,

sales, product characteristics, and the causal purchase consequences of rankings. Although

this is a tall data order for researchers lacking cooperation of platforms, these are data that

regulators could easily obtain. Moreover, the EU’s Digital Services Act (DSA) has provi-

sions allowing “vetted researchers” access to data, and regulators can access these data for

enforcement purposes.4 Moreover, we illustrate our approach with various useful, if imper-

fect, datasets available to us as researchers without inside access to platform data. This

demonstrates the practical promise of our approach.

Our paper proceeds in five sections after the introduction. Section 1 provides background

4See https://www.eu-digital-services-act.com/Digital_Services_Act_Article_40.html.
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on regulatory developments necessitating ways of quantifying self-preferencing, as well as

the relevant academic literatures. Section 2 defines bias using a simple equilibrium model of

consumer demand and platform ranking choice. This model can be estimated directly and

gives rise to tests for, and measures of, platform bias. Section 3 discusses the relationship

between our theory and the empirical bias detection approaches. We discuss advantages and

challenges of each approach through the lens of our framework; and we present a Monte

Carlo simulation demonstrating the possible advantages of the OB over the COO approach.

Section 4 describes the data we use to illustrate our approaches, based on Amazon’s Kindle

Daily Deal pages, Expedia hotel searches, and Spotify’s New Music Friday rankings. Section

4 also implements the two bias detection approaches using these platform data. In Section

5, we estimate the structural model using data on Amazon and Expedia (where we observe

prices as well as other necessary variables). The approach delivers estimates of rank bias,

platform preference for consumer vs seller surplus, and the welfare cost of biased rankings.

The paper offers four takeaways. First, our theoretical model delivers a simple definition

of platform bias. Second, both the model and Monte Carlo simulations highlight challenges

with the COO approach to detecting bias when platform products have unobserved attributes

affecting demand. By contrast, the OB approach is robust to the unobservables problem.

Third, we find that the OB and COO tests deliver different, and sometimes conflicting,

results across our three empirical contexts. Fourth, the structural model delivers meaningful

differences in platform attitudes toward consumers and sellers, bias, and welfare cost across

contexts, corresponding intuitively to the descriptive findings.
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1 Background

1.1 Policy context

Antitrust authorities around the world are now implementing or contemplating restrictions

on retail platforms that would prevent them from giving preference to their own products.

For example, under the EU’s Digital Markets Act (DMA), which was implemented in 2022

and came fully into effect in March of 2024, “the gatekeeper should not engage in any form of

differentiated or preferential treatment in ranking on the core platform service... ...in favour

of products or services it offers itself.” Moreover, the determinants of its rankings should be

“generally fair and transparent.”5 Under the proposed US American Innovation and Choice

Online Act (AICOA), it would be unlawful for a platform to “preference the products, ser-

vices, or lines of business of the covered platform operator over those of another business user

on the covered platform in a manner that would materially harm competition.”6 The Federal

Trade Commission’s 2023 suit against Amazon is motivated in part by Amazon’s practice

of “biasing [its] search results to preference Amazon’s own products over ones that Amazon

knows are of better quality.”7 Competition authorities in other countries are also concerned

about self-preferencing among online platforms. For example, India forbids Amazon from

directly selling its own products.8

The canonical problem that these policies seek to address is a platform ranking decision,

for example when a platform chooses an ordering of products on a promotional page, or

ranked search results. Self-preferencing is present when a platform’s own products (or some

other group of products the platform is suspected of favoring) obtain a better ranking or

5See https://www.consilium.europa.eu/media/56086/st08722-xx22.pdf.
6See https://www.congress.gov/bill/117th-congress/senate-bill/2992/text.
7See https://www.ftc.gov/news-events/news/press-releases/2023/09/ftc-sues-amazon-illeg

ally-maintaining-monopoly-power.
8See https://www.outlookindia.com/business/explained-why-is-competition-commission-of-i

ndia-probing-amazon-news-194362.
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page position than is appropriate for those products. Although researchers have begun to

create intuitive tests for bias – see Section 1.2 – the definition of bias is not clear. Given that

prohibitions on self-preferencing are, or will be, in force in many places, there is a pressing

need for both a definition of bias and a way to measure its consequences. Finally, while

platform behavior has in general been difficult for researchers to study, the Digital Services

Act has provisions allowing “vetted researchers” access to platform data to conduct studies

of the compliance of large platforms with the new regulations.9

1.2 Relevant literature

This paper is relevant to three strands of literature. First, it is relevant to theoretical

work exploring reasons why platforms might bias their rankings, including Armstrong and

Zhou (2011), Hagiu and Jullien (2014), Parker et al. (2020), De Corniere and Taylor (2019),

Bourreau and Gaudin (2022), and to the effects of self-preferencing on outcomes (Zou and

Zhou, 2023). Our work is also relevant to work on platform decisions about whether to

sell their own products (Hagiu and Wright, 2015; Anderson and Bedre-Defolie, 2021; Hagiu

et al., 2022).

Second, our paper is closely related to work testing for platform bias. Some research

demonstrates bias in specific contexts, such as Amazon’s “frequently bought together” rec-

ommendations or Amazon’s buy box (Chen and Tsai, 2019; Edelman, 2011; Raval, 2022;

Cure et al., 2022; Hunold et al., 2020). Other work attempts to measure platform bias

in search rankings directly, by regressing platform search rankings on product observables

and indicators for platform products (Jürgensmeier and Skiera, 2023; Farronato et al., 2023;

Aguiar et al., 2021). We discuss these conditioning on observables (COO) approaches in

9Article 40 of the DSA states that “providers of very large online platforms or of very large online
search engines shall, within a reasonable period, as specified in the request, provide access to data to vetted
researchers.” See https://www.eu-digital-services-act.com/Digital_Services_Act_Article_40.h

tml. See also https://www.brookings.edu/articles/platform-data-access-is-a-lynchpin-of-the

-eus-digital-services-act/, as well as Husovec (2023), Edelson et al. (2023), and Leerssen et al. (2021).
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some detail in Section 3.

Third, a growing literature uses structural approaches to analyze market power at major

platforms such as Amazon. While they do not test for bias per se, they do find results of

interest. Lee and Musolff (2021) find that Amazon is likely to favor its own products; but

consumers find those products appealing, raising questions about whether Amazon’s display

rankings reflect bias. Lam (2021) shows that counterfactual random product orderings would

be less favorable to the platform than organic orderings, but that also leaves open the question

of whether organic search results are biased. While not about rankings, Gutierrez (2021)

explores consequences of other Amazon choices for consumer and supplier welfare. Our paper

complements these studies by presenting a framework that allows for an explicit definition,

and measurement, of biases in rankings.

2 Model

This section introduces a model of consumer choice, platform rankings, and the resulting

surplus measures for consumers, sellers, and the platform. The model has two parts. First,

consumers confront ranked product lists. They maximize their utility by choosing among

the platform’s ranked options and, by extension, whether to purchase at all. Second, given

consumer preferences, the platform chooses how to rank the products to advance the plat-

form’s objectives, which may involve delivering surplus to buyers, sellers, and the platform

itself. The combined behaviors of consumers and the platform then give rise to the outcomes

of interest, which are the (potentially biased) rankings and their welfare consequences for

consumers and sellers.

The model allows us to characterize efficient solutions, i.e., platform rankings that lead

to a Pareto frontier running between maximal consumer and seller surplus. The model’s

supply side allows for deviations from the frontier if the platform is biased and favors one
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set of products (potentially its own) over others.

2.1 Consumer demand

A consumer who patronizes a platform confronts lists of products ranked by the platform.

These lists may arise as responses to search queries or may simply reflect ranked orders in

which platforms promote products. We refer to a rank-ordering of products as R.

The consumer’s probability of purchasing product j depends on the product’s underlying

quality (δ0j , which itself depends on product characteristics and the product’s price) and the

ranking the platform assigns to it (rj). One could use a variety of demand models to get

mappings from the product qualities {δ0j} and the ranking R to quantities, revenue, and

consumer surplus. These include various logit variants, as well as search models (Ursu, 2018;

Ursu et al., 2023) and models of choice with limited information (Goeree, 2008; Abaluck and

Adams-Prassl, 2021). Given our data and our goal of illustrating the framework in a simple

way, we adopt a logit approach.

In the model, consumer i chooses among J products on the ranked list (and the outside

option), based on each product’s rank-independent quality δ0j and its ranking in the search

order, rj. The consumer’s utility for product j when ranked at rj is given by:

uij = δ0j + γrj + ϵij,

where δ0j is the rank-independent quality of product j, reflecting the consumers’ evaluation

of product j’s characteristics, including its price. The term γrj embodies the causal impact

of product j’s promotional rank position on its utility (and purchase probability).10 The

term ϵij reflects consumer i’s idiosyncratic taste for product j. When ϵij follows an extreme

value distribution, this is the plain logit; and product j’s market share when ranked rth is

10Note that δ0j may itself be related to the product’s rank rj , for example if the platform assigns ranks in
part based on unobservable product attributes.
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given by

sj(r) =
eδ

0
j eγrj

1 +
∑
eδ

0
j eγrj

=
eδj

1 +
∑
eδj
. (1)

2.2 Supply: the platform ranking decision

The platform has J products to present to consumers, so the platform’s problem is to choose

among J ! possible rank orderings. This is a difficult combinatoric problem, given the dozens

of products usually under consideration.11 The ranking that the platform chooses could serve

the interests of consumers, sellers, or the platform itself. It is helpful to divide the platform

ranking problem into two parts: a) where to locate on a welfare frontier between consumer

and seller surplus (how to balance the interests of consumers and sellers), and b) how much

to bias the rankings, which would move the solution away from the frontier.

Our setup has three primitives. First, each product has two characteristics, a rank-

independent utility δ0j and price pj. The third primitive is the causal impact of the rank on

the purchase propensity and utility: The further the platform ranks a product below the top

position, the greater the proportionate reduction in a product’s utility and sales.

The welfare frontier requires product rankings that maximize weighted combinations of

consumer surplus (CS) and collective seller surplus; and the ranking that maximizes CS is

easy to derive. Consumers benefit most from the highest-utility products, and worse platform

ranks reduce utility by a monotonically increasing proportion. Hence, consumer surplus is

maximized by placing products with the highest rank-independent utility at the best ranks.

This is clearly visible in the plain logit, where the surplus that consumers derive from the

choice set is given by

CS =
M

α
ln

(
1 +

∑
j∈J

eδ
0
j eγrj

)
. (2)

Because eγrj decreases in ranks when γ < 0, CS is maximized by ranking products in declin-

11This problem is also addressed in Compiani et al. (2021), who develop a model of platform rankings to
maximize consumer surplus and profits.
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ing order according to rank-independent mean utility δ0j . This “consumer-centric” ranking

provides one endpoint on the welfare frontier between consumer and seller surplus, where

the frontier is the downward-sloping region of the relationship between maximal consumer

and seller surplus.

The ranking that maximizes sellers’ expected surplus, which delivers the other welfare

frontier endpoint, is more complicated to derive. Here, we make two assumptions for simplic-

ity. First, we assume that prices are set by product suppliers prior to the ranking decision.12

Second, for exposition, we assume zero marginal costs and therefore that the price equals

per-unit variable profits.13 Then, in the plain logit, expected per-consumer seller surplus

(or, equivalently, revenue) from product j, when ranked according to R, is given by

πj(rj, R) ≡
pje

δ0j eγrj

1 +
∑

j∈J e
δ0j eγrj

. (3)

One intuitive potential strategy for maximizing collective producer surplus is to rank prod-

ucts according to pje
δ0j , the rank-independent part of the numerator. The challenge with this

approach is that the ranking R affects both the numerator and the denominator of Equation

(3): Any re-ordering that increases the sum of the numerators also can increase the denomi-

nator, so that the ratio – revenue – does not necessarily rise. However, in Appendix Section

A.1, we show that ranking according to pje
δ0j produces a very accurate approximation to

seller surplus maximization; and we proceed with this approach.14

12Waldfogel (2024) finds that the Amazon search ranks of Amazon-brand products became 10 rank po-
sitions less favorable following Amazon’s designation as a “gatekeeper” in September of 2023. Despite the
large change in Amazon’s ranking algorithm, the prices of Amazon-brand products did not change relative
to other products. This provides justification for treating pricing as exogenous in the present exercise.

13Two points bear mention. First, if marginal costs are observed, one can simply replace prices with
per-unit variable profits throughout the model. Second, many interesting products (e.g., ebooks) have zero
marginal costs, so that prices equal per-unit variable profits.

14Appendix Section A.1 provides conditions under which this ranking rule maximizes seller surplus, and
we explore whether permutations from our proposed ranking (by switching adjacent rank positions) generate
higher surplus in one of our empirical contexts. Around our proposed revenue-maximizing rankings, we find

higher seller surplus in only 0.16 percent of cases, and in these cases, the surplus from ranking by pje
δ0j is

within 0.001 percent of the surplus we obtain with the permutation. We find no cases in which permutations
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Maximizing the individual components provides two endpoints of the welfare frontier.

Ranking by eδ
0
j (or by its logarithmic transformation δ0j ) maximizes CS, while ranking by

pje
δ0j maximizes seller surplus. Taking a logarithm of pje

δ0j , we obtain a welfare frontier

between consumer and seller surplus by ranking products according to an index that weights

these two terms:

I
′

j = κ1 ln(pj) + κ2δ
0
j , (4)

for varying combinations of κ1 and κ2. The index has intuitive special cases. For example, if

κ1 = κ2, the resulting ranking maximizes revenue. If κ1 = 0 and κ2 > 0, then the resulting

ranking maximizes CS. The relative sizes of κ1 and κ2 indicate the relative value that the

platform attaches to buyers and sellers.

In addition to balancing the interests of consumers and sellers, a platform may have

other objectives, for example if it obtains additional benefits from selling some products

rather than others. Define 1j as an indicator for platform-preferred products. Then the

index underlying platform rankings can be augmented as

Ij = κ1 ln(pj) + κ2δ
0
j + ψ1j + εj, (5)

which we term the platform’s supply function. If additional factors (besides ln(pj) and

δ0j ) affect the platform’s chosen rankings, these rankings will lead to interior departures

from the consumer-seller frontier. We propose to measure the welfare effect of biases from

the ordinal relationship between ranks and the explanatory variables in Equation (5). If we

estimate ψ ̸= 0, then we have evidence of differential ranking treatment of platform products.

Furthermore, we can debias the rankings by solving the model with ψ = 0.15

deliver both higher revenue and consumer surplus.
15We include an error term (εj) because the parameterization will not fit the data perfectly. As a result,

the model’s characterization of actual rankings will deviate from the observed values. In our empirical
applications, we show that the model’s characterization of actual rankings is very similar to observed rankings.
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2.3 Discussion of our bias definition

For an intuitive definition of bias, consider a case in which the platform sells its own products

alongside those of suppliers and gets a proportionate share cj of revenue from each product j.

Then the platform will maximize its own revenue by ranking products according to cjpje
δ0j .

If cj is larger for the platform’s own products, this ranking will reduce total revenue (and

therefore the total proceeds going collectively to suppliers and the platform) relative to

the welfare frontier. When the platform commission rate is not constant across products,

platform profit maximization produces bias that gives rise to an inefficiency.16

Having said this, we recognize that it is customary for retailers with “store brands” to

privilege their own products. Retailers are, after all, interested in their own proceeds and not

total seller surplus. For example, the Apple Store sells only Apple products, and grocers and

drugstores commonly feature their store-brand products prominently alongside third-party

suppliers’ name-brand products. Few would argue that these practices are objectionable

(e.g., Dubé, 2022).

Yet, the extent to which a retailer can engage in self-preferencing may depend on its

market share. A large platform without much competition would face little market discipline

against self-preferencing. A retailer facing competition, on the other hand, might be limited

in its ability to self-preference. And, indeed, critics of platform self-preferencing make a

distinction between large platforms and other retailers. For example, under the Digital

Markets Act, the EU has designated six services as “gatekeepers” that are forbidden from

self-preferencing.17

We view our framework as a tool for defining platform bias and measuring its extent in

platform ranks. Whether bias is sufficiently harmful to welfare to warrant its prohibition is

a separate question, and our framework may provide useful input into such analysis.

16Appendix Section A.2 discusses the relationship between commissions and bias when marginal costs are
positive.

17See https://ec.europa.eu/commission/presscorner/detail/en/ip_23_4328.
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3 Comparing bias-testing approaches

In our theoretical framework, bias enters through the platform supply function in Equation

(5) when ψ ̸= 0. There are two broad ways to test for bias; and both approaches, along

with their strengths and weaknesses, are interpretable through our theoretical framework.

One – the conditioning on observables (COO) approach – is to regress display rankings on

controls and a platform indicator, and to interpret the coefficient on the platform indicator

as bias. A second, outcome-based (OB), approach asks whether platform and non-platform

products achieve different levels of ex-post success, conditional on the ranks the platform

assigns them. In this section, we motivate both tests, and we compare their effectiveness

using Monte Carlo simulations.

3.1 Conditioning on observables tests

The supply function in Equation (5) is an ordinal rank index: By construction, products

at better ranks would have higher values of Ij. Although rankings are based only on the

ordinal information in Ij, researchers using COO tests implicitly treat the index as cardinal.

They estimate the ranking/supply function directly by regressing ranks on factors relevant

to product appeal as well as the platform indicator 1j. However, because the terms in the

supply function are not all directly observable, regressions may take the following form:

rj = Xjλ+ αpj + ψ1j + νj, (6)

where Xj includes observable product characteristics. Then, researchers interpret the esti-

mated ψ as a measure of platform bias. This, for example, is the approach of Jürgensmeier

and Skiera (2023) and Farronato et al. (2023).

Our theoretical framework points out both the appeal and potential shortcomings of this
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approach. Given cardinality and linearity assumptions, if the control variables Xj contain all

relevant determinants of δ0j , then the coefficient ψ in the regression in Equation (6) measures

bias accurately. In particular, if ψ < 0, then ranks of platform products are ψ positions

lower (better) than the controls warrant, indicating that the platform is biased in favor of

platform products.

However, if one cannot adequately characterize rank-independent mean utility with Xj,

then ψ may reflect not only the platform’s exercise of bias but also demand-based reasons

for a product’s ranking. For example, if the platform’s own products are appealing to

consumers beyond what is captured inX, then a negative coefficient on the platform indicator

would reflect a combination of possible bias and desirable, unobserved product characteristics

affecting rankings.18

3.2 Outcome-based tests

Outcome-based tests for bias may also be viewed through the lens of our supply function Ij.

In the absence of bias, ψ = 0, so that κ1 ln(pj) + κ2δ
0
j would be equal for both platform and

non-platform products at the same rank rj. Rearranging terms, this indicates that we could

test for bias by estimating

δ0j = µr − (κ1/κ2) ln(pj) + (ψ/κ2)1j + νj, (7)

where µr is a rank fixed effect, and the coefficient on 1j reflects bias. While δ0j is not directly

observable, we can proceed if we can observe qj. This is because, conditional on rank, ln(qj)

18This is the platform analog to a host of familiar social science problems in which researchers seek to
measure unwarranted disparity. Examples include measurement of discrimination in labor markets and
unwarranted variation in criminal penalties (Klepper et al., 1983). Researchers pursuing those questions
have long recognized the challenges of the conditioning on observables approaches, and those challenges are
present in platform contexts as well.
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is proportional to δ0j .
19 Hence, a regression of log-quantities on rank dummies, ln(pj), and

1j delivers a test for rank bias. This test works as long as the causal effect of rank on sales

operates the same for platform-preferred and non-preferred products.20

The OB approach, as also implemented in Aguiar et al. (2021), frees us from both the

need for functional form assumptions on Ij and the need to observe all of the product

characteristics that explain δ0j . However, the OB approach brings the additional need to

observe the outcome affected by the rank (the quantity sold for each product).

3.3 Monte Carlo simulation

A Monte Carlo simulation intuitively illustrates the possible tradeoff in using the OB vs

the COO approaches. Suppose that the platform observes variables X and Z, which are

predictive of rank-independent sales success q0:

q0 = βX + τZ + ϵ.

Assume further that, because of causal effects of ranks on sales, realized sales quantities

depend on ranks assigned according to

q = eγrq0

For the simulation, we draw X and Z from standard normal distributions. The variable

X is observed by the researcher, while Z is not. Moreover, Z is potentially correlated

with an indicator 1 for platform-owned products: We draw Z and a latent variable D

19For example, in logit, δj = ln(sj)− ln(s0). First, sj = qj/M (where M is market size). Second, s0 (the
market share of the outside good) is constant across products j in J , so that ln(qj) is proportional to δj .
Hence, conditional on rank, ln(qj) is proportional to δ

0
j .

20The OB approach can also produce a measure of bias in terms of rank positions. Suppose that q0j =
A + Brj + C1j . Then C provides information about bias, and C/B measures the degree of bias in rank
terms.
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(determining whether a product is platform-owned) from a joint standard normal distribution

with correlations ρ varying from -0.75 to 0.75, and we define the platform-owned product

indicator 1 = 1 if D > 1. As a result, about 15.9 percent of observations are platform-owned.

We choose β = τ = 50, and we draw ϵ from a normal distribution with standard deviation

100. Finally, we set γ = −0.02.

We abstract from seller surplus, and we instead assume that the platform optimizes on

the total quantity sold (which maximizes CS) but may do so with bias: The platform may

treat its own products as though they would sell more (or less) than they actually do. Hence,

the platform ranks products according to an index based on the determinants of expected

sales success, plus possible bias:

I = βX + τZ + ψ1,

where ψ ̸= 0 indicates bias. We let ψ vary between -100 and 100. For each ψ and ρ, we

simulate 500 iterations for 200 “markets,” with 50 ranked products in each market.21

We are interested in the abilities of the COO and OB tests to correctly identify the

direction of bias for varying levels of both true bias and the correlation between 1 and the

unobserved rank determinants. To this end, we use our simulated data to perform the two

tests for bias, each with linear and logarithmic specifications. First, we implement a COO

test, regressing the rank rj on just the (observable) Xj and the platform indicator:

rj = βXj + ψ
′
1j + ν

′

j,

and we also employ ln(rj) as the dependent variable. Second, we perform an outcome-based

21We consider a two-way grid of ψ = −100,−75, . . . , 100 and ρ = −0.75,−0.5, . . . , 0.75.
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test with the following regression:

qj = µr + ψ
′′
1j + ν

′′

j ,

where µr denotes rank dummies, and we also use ln(qj) as the dependent variable.

Each of these tests delivers one of three results: significant positive bias, significant

negative bias, or a result indistinguishable from zero. In Figure 1, we compare the detected

presence and direction of bias to the true, simulated bias. The correlation between Z and the

latentD underlying the platform indicator varies along the figure’s x-axes, and the underlying

bias varies along the y-axes. The colors indicate the share of simulations correctly detecting

the true bias, ranging from yellow (100 percent correct) to purple (zero percent).

The top panels show the COO tests, using rank and its logarithm as dependent variables.

Both level and log specifications find the wrong answer rather frequently (about 22 percent

of the time across all chosen ψ and ρ), especially when the correlation is substantial and

when the true bias is small.22 This is not surprising, as it is impossible to distinguish bias

from a simple correlation between Z and 1. For example, in our setup, the platform-favored

products would have an average ranking of 14 both in a simulation with a strong positive

bias (ψ = 75, which is roughly a standard deviation of qj) and no correlation between Z and

1, as well as with zero bias (ψ = 0) and a correlation ρ of 0.75.23

The bottom panels of Figure 1 report the OB tests from linear and logarithmic specifi-

cations. Compared to the COO test based on observable X, the OB approaches are more

accurate. While the COO tests obtain the correct answer in 78 percent of cases, the OB

approach is correct in 98 percent of cases in the linear specification (and 96 percent of cases

22When there is no bias, both COO tests find the correct answer only 13 percent of the time.
23Being able to condition on Z would largely solve the problem. In the linear specification, COO tests

including Z deliver the correct answer every time when bias is present, and they correctly identify the absence
of bias 93 percent of the time. The log specification, however, only correctly identifies the absence of bias
34 percent of the time, reflecting the importance of functional form.
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using logs). The instances in which the OB test is “incorrect” reflect failures to detect small

amounts of bias.24 While the OB test never finds significant bias inconsistent with the true

level, the COO test finds significant bias of the wrong sign in 28.6 percent of instances when

the true bias is 1/3 of a standard deviation of q, and 14.3 percent of the instances when the

true bias is 2/3 of a standard deviation. Our simulation reinforces our concerns about unob-

servables undermining COO tests and leads us to conclude that if one can observe outcomes

and ranks, the outcome-based test would be preferred.

4 Data and descriptive evidence

Before describing the data we use to illustrate our approaches, it is helpful to outline what

we need in a context, and in data on that context, for the analyses we envision. First, we

require a context with a relevant form of possible bias, for example a platform that sells its

own, or otherwise potentially favored, products alongside those of other suppliers. Second,

the context must feature ranked product listings and display ranks that affect the products’

sales. Third, to implement the COO approach for detecting rank bias, we also need detailed

product characteristics, including prices. The OB approach does not require detailed product

characteristics but instead requires direct measures of the product sales quantities that the

ranks affect, along with prices. Finally, implementing the full welfare analysis requires all

of the above, as well as a way to estimate a causal rank effect, for example with randomly

assigned product rankings or products that appear repeatedly at different rank positions.

The datasets and contexts we are able to examine – from Amazon, Expedia, and Spotify

– have some but not all of the features we would ideally have. Still, they allow illustration

of our approaches. Our analyses of them emphasize the features we need to implement our

approach.

24For example, a bias of 25 is roughly a third of a standard deviation of q.
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4.1 Amazon Kindle Daily Deals

Each day, Amazon selects about 50 ebooks for their “Kindle Daily Deal” page. These ebooks

are displayed at the site in ranked order, and the title list is also emailed to interested

customers. This context has several strengths. First, a significant share of the titles are

published by Amazon Publishing, making self-preferencing a possible concern. Second, while

rankings are not randomized, the same titles are promoted at different ranks on different

days, giving a plausible strategy for measuring rank effects. Finally, marginal costs of ebooks

are the same (zero) for all products, so that prices directly reflect per-unit variable profits.

The data for this application are drawn from two sources. First, for each date between

April 4 and July 12, 2022, we collected data on the titles promoted on the Kindle Daily Deal

page, as well as the rank order of the promoted titles, directly from Amazon.25 This is a total

of 76 daily promotions and 3,738 promotional listings for 2,892 distinct titles. Our second

source, Bookstat, provides a measure of daily Amazon sales (inferred from sales rankings)

and prices for each of these ebook titles.26 For each title, we also observe whether Amazon

is the publisher and its sales during 2021.

Our main analyses make use of data for the day of the promotion and the following day, as

the promotions affect sales for two days. For the day of the promotion and the following day,

ebook sales average 138.9 for non-Amazon, and 63.7 for Amazon; and the price averages $4.17

for non-Amazon books and $2.26 for Amazon. Despite the apparent differences in popularity,

Amazon ebooks are ranked highly. The average promotional ranking for Amazon books is

17.5, compared to an average of 26.5 for other books.

While the context is of great interest, the data here have some shortcomings. First,

rather than being choice-level data as with Expedia (see below), the Amazon data are at the

product level. Second, we have high-frequency quantity data, but they are inferred from sales

25See https://www.amazon.com/b?node=6165851011 and https://www.amazon.com/s?rh=n%3A616585

1011&fs=true for the current list.
26See https://bookstat.com/.
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ranks rather than directly observed; and there is some question about the relative accuracy

of sales estimates for Amazon vs non-Amazon products.27

4.2 Expedia hotel listings

Expedia is a site where consumers can search for, and book, travel. As part of a data mining

competition in 2013, Expedia made available a dataset of hotel searches, including all of the

product options presented to consumers and information on which (if any) hotel was chosen

by the Expedia user.28 The data include 399,342 hotel searches at Expedia during 2013.

Of these, 277,797 were organic searches, and Expedia randomized the rank ordering of the

hotels in the remaining 121,545 searches. Available hotel characteristics include the price,

the star type, the average consumer rating of the hotel (on a five point scale), a property

location score, and whether the hotel is part of a chain. The dataset includes 8,624,781

listings, for an average of 21.6 listings per search. Among the organic search results, 91.6

percent of searches result in a booking (reflecting over-sampling of successful searches), while

only 12.5 percent of random-order searches produce a booking.29 Finally, 64.5 percent of the

listings are for chain hotels.

In many respects, these resemble ideal data. We see the products presented to individuals,

as well as the product ranks, prices, and characteristics; and we also see which products

consumers chose. Moreover, because of randomization of product rank orderings, it is easy

to estimate causal rank effects. Despite these significant advantages, the context has four

shortcomings. First, Expedia does not own hotels, so there is no direct possibility of self-

27It is not clear whether the data can accurately distinguish between consumption from Kindle Unlimited
borrowing and a la carte sales. Virtually all of the Amazon Publishing books are available through Kindle
Unlimited, while only some of the other books are, raising a question about interpreting differences in
reported sales as bias.

28The data, at www.kaggle.com/c/expedia-personalized-sort/data, were made available through
the International Conference on Data Mining (ICDM 2013) and Kaggle.com. Ursu (2018) uses the data to
document causal impacts of rank positions.

29See www.kaggle.com/c/expedia-personalized-sort/data.
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preferencing in this context. Instead of studying self-preferencing, we explore the possibility

of bias with respect to whether a hotel is part of a chain. Second, the data cover 2013, which

is by now of essentially historical interest. Third, the over-sampling of successful organic

searches may bias the estimates. Finally, hotel services are not digital products, and they

have marginal costs that we do not observe. We instead assume that marginal costs of hotel

stays are similar for both chain and non-chain hotels.

4.3 Spotify New Music Friday

Each week, Spotify creates country-specific lists of 50 new songs for their New Music Friday

playlists. As Aguiar and Waldfogel (2021) document, Spotify appears to rank the chosen

songs in descending order of expected promise. Here, we use the top 20 New Music listings

for 26 countries during 2017 (Aguiar et al., 2021) to study potential bias according to whether

music is released by major labels. While Spotify does not produce music, the major record

labels have substantial ownership stakes in Spotify, and observers have raised concerns about

possible bias in this dimension.

We observe usage data for the top 200 songs by day and country, and we have a total

of 18,489 listings. In our data, 62.1 percent of the listings are for major-label songs, and

43.0 percent of the major-label songs appear among their countries’ top 200 songs, compared

with 24.2 percent for independent songs. In addition to having the ranked lists of promoted

songs, the Spotify data also include detailed song characteristics that allow us to implement

COO and OB bias tests.30

A few additional features of the Spotify context merit discussion. First, while ranks are

not randomized, we see the same songs at different curator promotional ranks in different

countries, as in the Amazon context. Second, because these are digital products, marginal

30For each song we observe the artist’s previous-year streams, some musical characteristics of the songs
such as danceability, beats per minute, speechiness, etc., and whether the song is produced by a major record
label.
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costs to the upstream sellers are zero. Finally, because users buy subscription access rather

than purchasing songs, there is no product-specific revenue; and welfare analysis would

require a different framework.

4.4 Comparing bias tests using platform data

While the Monte Carlo exercise in Section 3.3 provides one basis for comparison, we also

implement the COO and OB tests using the data from Amazon, Spotify, and Expedia.

The goal of this exercise is to gauge the similarity of bias test results from the contrasting

approaches.

We summarize our results in Table 1. Panel A reports bias tests using the Amazon

data. The first column reports a COO regression of a product’s log rank on an Amazon

dummy and the product’s log price. The regression also includes (unreported) controls

for star ratings, the number of reviews, and the title’s sales during 2021, the year before

the daily promotions we study. The coefficient on the Amazon dummy, -0.269 (se=0.025),

indicates that Amazon books receive ranks that are 23.6 percent31 better (lower) than their

non-platform counterparts, conditional on observable characteristics.

Column (2) reports an outcome-based (OB) test using the log of realized quantity sold as

the dependent variable and rank fixed effects, price, and the Amazon indicator as explanatory

variables. The -0.696 (0.042) coefficient on the Amazon dummy indicates that, conditional

on the rank the platform assigns to them, Amazon books sell 50 percent less (= e−0.696 − 1).

Hence, this OB test also indicates bias in favor of Amazon books.

So far we have one measure – from the COO approach – of the bias in terms of rank

positions. The OB approach can also deliver a measure of rank bias if we parameterize

the relationship between rank-independent sales and the rank for each product type. We

calculate rank-independent sales by subtracting the causal rank effect from log sales: ln(q0j ) =

3123.6 = 100×
(
e−0.269 − 1

)
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ln(qj) − γ ln(rj), where we use the column (3) estimate of γ. The fourth column reports a

regression of rank-independent log sales on log rank, log price, and the Amazon indicator.

The platform coefficient, -0.714 (0.042), divided by the log rank slope coefficient (-0.190)

delivers an estimate of rank bias: Absent platform bias, the promotional ranks of platform

products would be e−0.714/−0.190 = 42.9 times higher (worse). In effect, this means that

platform products ranked 2nd or worse should instead have been ranked last among the 50

products. While the OB and COO tests give the same direction of bias, the magnitudes are

very different in our Amazon estimates.32

The second panel of Table 1 reports tests using Expedia data. The first column, using

a COO approach, shows that chain hotels (the group whose potential platform bias we

explore) receive rankings that are 0.67 units higher (worse) than they should be. The second

column, using an OB approach and a linear probability model, echoes the finding of anti-

chain bias, showing that chain hotels are 0.8 percentage points (0.02) more likely to be

booked, conditional on search rank. Columns (3) and (4) quantify the OB results in terms of

rank positions. The third column reports a regression of the probability of booking a hotel

on rank using the randomized sample, giving a causal rank coefficient of -0.00031 that allows

calculation of a rank-independent booking probability. Finally, Column (4) – using the rank-

independent booking probability as the dependent variable – indicates that the platform puts

chain hotels 2.1 (=0.00710/0.00342) rank positions worse than what they deserve. While

still small, this is roughly three times the rank bias implied by the COO approach.

The third panel of Table 1 reports results for Spotify. The first column, using a COO

test, shows bias in favor of major-label songs. Songs from major record labels are ranked 1.2

positions better than their observable characteristics warrant.33 The second column, using an

32When we specify the models in levels rather than logs, the COO approach gives a rank bias of 5.2
positions in favor of Amazon products, while the OB approach delivers bias of 42.9 rank positions.

33The control variables include the artist’s song streams in the previous year, the song’s beats per minute,
as well as other characteristics known as: valence, energy, accousticness, instrumentalness, danceability,
liveness, and speechiness.
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OB test, finds the opposite direction of bias. Conditional on rank, major-label songs stream

44.0 percent more than other songs, indicating bias against major-label songs.34 Columns

(3) and (4) deliver the OB estimate of rank bias. Using Column (4), dividing the major-

label coefficient (0.44) by the rank coefficient (-0.106) gives a rank bias of 4.2 positions. The

Spotify context is noteworthy in that COO and OB tests detect biases of opposite signs.

The comparisons have a few implications. First, the COO and OB tests sometimes give

different answers for whether there is bias. Second, even when the tests give the same

direction of bias, the magnitudes differ substantially. These results reinforce the a priori

concerns – and the Monte Carlo results above – about the reliability of the COO approach.

5 Model estimates and simulation

This section presents estimates of the demand and supply models for Amazon and Expedia

(the two contexts with product prices), as well as structural estimates of rank bias and its

welfare cost.

5.1 Actual and debiased rankings at Amazon

We estimate demand for ebooks on the Kindle Daily Deals pages using a plain logit approach.

That is, we estimate

ln(sj)− ln(s0) = xjβ + αpj + γrj + ξj (8)

The vector xj includes characteristics of title j: whether it is an Amazon product and title

sales in the previous year. Although we have suppressed time subscripts, the estimates

include both the day of the promotion and the following day, as well as a fixed effect for

the following day. The first column of Table 2 reports results from this demand model.

34Because we observe streams only for songs appearing among the top 200 for a country and day, we must
impute the usage for songs not making the top 200. We assign them the lowest observed usage.
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The coefficient on the log sales rank is -0.405 (0.027), capturing both the tendency to place

more appealing books at better ranks and a causal impact of ranks on sales. The Amazon

coefficient is negative (−0.669, se = 0.045), indicating that consumers attach lower utility to

Amazon products, even conditional on rank.

The supply model requires a rank-independent mean utility measure, δ0j = δj − γrj. We

predict δj from Equation (8), where we use a causal estimate of the rank effect γ from a

separate regression including a title fixed effect, identifying a γ of -0.335 (0.103) from within-

title variation in its Kindle Daily Deals rank.35 We then use the calculated δ̂0j to estimate

the supply model using a rank-order logit on

rj = κ1 ln(pj) + κ2δ̂
0
j + ψ1j + ϵj.

For ease of interpretation, Column (2) of Table 2 first reports results from a linear regres-

sion with promotion-day fixed effects. Both price and utility terms have negative coefficients,

indicating that both higher utility and higher prices give rise to better (lower) ranks. Plat-

form products, too, receive better ranks, indicating bias. Column (3) of Table 2 reports the

rank-order logit results (Hausman and Ruud, 1987), using promotion-day combinations as

groups. The results are normalized so that positive coefficients correspond to better (lower)

ranks. This model, which relaxes the cardinality assumption, also indicates that both higher

prices and rank-independent mean utilities are associated with better rankings. The posi-

tive price coefficient reflects the platform’s concern about revenue; and the result that the

utility coefficient exceeds the price coefficient indicates that the platform is also concerned

about CS. Finally, the ψ coefficient provides the direct test for bias, and it is consistent with

platform self-preferencing.

The estimated supply function allows calculation of both debiased and model-actual

35Of the 2,835 titles in the dataset, 564 appear on the list more than once.
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promotional ranks. Ranks reflecting the estimated bias ψ produce Amazon product ranks

averaging 17.5, whereas debiased ranks (based on a recalculated supply function that sets

ψ = 0) generate an average Amazon product ranking of 41.1. This indicates that the actual

rankings are biased by 23.6 rank positions in favor of Amazon. Panel A of Figure 2, showing

kernel density plots of the actual and debiased rank distributions of Amazon products,

illustrates the bunching of Amazon products near the tail with the debiased ranks.36 This

result is consistent with the finding in the OB test indicating a rank bias of 42.9 positions.

By contrast, the linear version of the COO test gave a bias of just 5.2 rank positions.

5.2 Expedia

Table 3 reports model estimates for Expedia. The first two columns report results from our

demand model, which we estimate as a nested logit model in 2 parts.37 First, consumers

choose among the displayed options for the cases in which a hotel is chosen. Second, they

decide whether to book a hotel based on the inclusive value from the first part. Column

(1) reports results for the lower nest using a conditional logit model and the data with

organic display ranks. The rank coefficient (-0.129, se=0.0004) captures both rank effects

and underlying quality differences across search rankings. The coefficients appear reasonable:

Consumers attach higher utility to hotels with more stars and better user ratings, and

they dislike higher prices. Finally, consumers attach additional utility worth roughly $16.64

(=0.127/0.00763) to chain hotels.

The upper nest is the decision of whether to book a hotel among those listed. For this,

we estimate a logit model relating the binary booking choice to the inclusive value from

the lower nest. Column (2) of Table 3 is estimated on both the randomized and organic

search results and shows that consumers are more likely to book when the choice set is more

36Figure 2 also shows that the model matches observed rankings well: Observed Amazon product ranks
also average 17.5.

37Our implementation of the nested logit follows Chapter 4 of Train (2009).
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appealing.38 The coefficient on the inclusive value – which gives the nested logit substitution

parameter σ – is 0.535 (0.007).

The next two columns report the supply function estimates relating search rankings to

prices and the rank-independent utilities δ0j .
39 Column (3) reports a linear regression of the

rank on the supply parameters, along with hotel search fixed effects, and Column (4) reports

the rank-ordered logit, using searches as groups. Both specifications show that the platform

gives better ranks to hotels that are more appealing to consumers and to hotels with higher

prices. The utility coefficients exceed the price coefficients, indicating that rankings are

chosen with a concern for consumers and not simply revenue. Finally, the platform assigns

worse ranks to chain hotels, reflecting an apparent bias against chains, although the bias

coefficients are small in comparison with the price and utility terms.40

Panel B of Figure 2 illustrates the degree of chain bias at Expedia using kernel density

plots for the chain hotels’ actual rankings, as well as the model’s versions of actual and

debiased rankings. The figure shows two things. First, the model’s actual chain rankings,

which average 12.2, are close to those observed in the data, which average 12.3. Second,

the debiased search ranks – setting the bias parameter ψ to zero – average 11.4 for chain

hotels, indicating a bias of 0.8 rank positions against chains. Recall that the other bias tests

also find small amounts of bias. The COO approach produced bias of 0.6 while the OB test

delivered 1.8.

38This is likely driven in part by the oversampling on organic searches resulting in purchase.
39To obtain δ0j , we first estimate the conditional logit model on the randomized sample, which gives us a

causal ranking parameter γ of −0.0799 (0.0013). We then calculate a rank-independent utility by subtracting
γrj from the utility function associated with each product’s conditional choice probability.

40The chain bias we identify here is analogous to the forgone profit opportunity from incorrectly-chosen
ranks in Compiani et al. (2021). In our context, deviations from surplus maximization that serve the
platform’s interest illustrate our notion of platform self-preferencing.
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5.3 The platform’s objective and welfare estimates

We model the welfare frontier as the locus of CS and revenue combinations arising from

rankings of the unbiased supply function in Equation (4): I
′
j = κ1 ln(pj) + κ2δ

0
j , for various

values of κ1 and κ2. The frontier extends from maximal revenue, when κ1 = κ2, to the

revenue associated with maximal CS, when κ1 = 0, so the relevant welfare frontier segment

is downward-sloping. The left and right panels of Figure 3 depict the average welfare fron-

tiers for the Amazon and Expedia contexts, respectively, relative to their CS and revenue

maxima. The figures also show the model depictions of the actual and debiased choices. The

welfare cost of bias is the difference in CS and revenue between the model’s debiased and

actual rankings. The debiased location on the frontier shows the platform’s attitude toward

consumers versus sellers.

Table 4 reports both welfare results for the Amazon and Expedia examples. The top

panel reports our measures of the welfare losses from the bias in actual rankings. Actual

rankings here forgo 3.3 percent of the CS in debiased rankings, and they forgo 5.3 percent

of the corresponding revenue. The bottom panel shows the platforms’ dispositions toward

consumers and sellers. After debiasing (setting ψ = 0), Amazon’s rankings deliver a surplus

combination that achieves 98.9 percent of maximal CS and 90.2 percent of maximal revenue.

The platform’s debiased choice sacrifices proportionally more revenue than consumer surplus,

indicating relatively high platform concern for consumers. Both results are also illustrated

in Panel A of Figure 3. These estimates, showing that Amazon ranks as if it valued CS more

than seller revenue, are similar to previous findings (Gutierrez, 2021; Reimers and Waldfogel,

2017) that Amazon’s pricing attaches high value to consumers.

The second column of Table 4 presents results for Expedia. Because we estimate only

negligible chain bias, debiasing Expedia’s rankings has a very small effect on welfare. Expe-

dia’s bias in the treatment of chain hotels during 2013 sacrificed only 0.06 percent of CS and

0.23 percent of revenue. Expedia’s debiased rankings deliver a point on the welfare frontier
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that achieves 97.6 percent of maximal CS and 87.8 percent of maximal revenue, indicating –

as in the Amazon example – platform concern for consumers. See also Panel B of Figure 3.

It should be emphasized, again, that these results are more illustrative of the approach

than they are informative about actual platform bias.

6 Conclusion

Growing concern about platforms’ potentially biased exercise of power creates a pressing

need for tools and frameworks for evaluating platform bias. This paper provides a few

steps in this direction. First, we develop a simple theory of demand and supply in platform

contexts. Consumers choose among platform-ranked products, and platforms choose ranks

that balance the interests of consumers, sellers, and the potentially biased platform itself.

This framework provides a definition of bias – platform rankings that create deviations

from the welfare frontier – and a way to think about various tests for bias. We implement two

such tests, a conditioning on observables (COO) and an outcome-based (OB) bias test, in

three contexts. The regression results, along with a Monte Carlo study, reinforce our concerns

about the COO approach relative to the OB approach. We then implement the equilibrium

framework directly, using illustrative data from Amazon and Expedia. The structural model

provides estimates of rank bias, and it allows us to measure the welfare cost of platform bias

and to estimate the platform’s balancing of consumer and seller interests.

The data requirements for implementing our approach are in principle simple but in

practice difficult without data internal to platforms. Data that regulators could obtain

for enforcement would allow relatively straightforward implementation of our approach in

meaningful, contemporary contexts. While the Digital Services Act includes a provision to

allow researchers access to data for studying “systemic risk” to the European Union, it is
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unclear whether platform self-preferencing falls into that category.41 In the meantime, this

paper provides a framework for analyzing and detecting platform bias. Some issues may

merit further attention. For example, we have taken suppliers’ prices to be given and fixed

even as we counterfactually eliminate platform bias. While prices at Amazon are apparently

invariant to exogenous changes in search ranks, it is nevertheless possible that prices are

endogenous to platform bias more generally. Still, we hope that our framework provides a

useful input into the analysis of platform bias as regulators forbid the practice.

41See https://algorithmic-transparency.ec.europa.eu/news/faqs-dsa-data-access-researche

rs-2023-12-13_en.
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7 Figures and Tables

Figure 1: Monte Carlo comparison of COO and OB tests
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Notes: The figure reports results of Monte Carlo exercises comparing how often the true bias

(or its absence) is detected by conditioning on observables (COO) and outcome-based (OB)

tests. The vertical axis shows the true degree of bias, where a bias of 100 corresponds to about

4/3 of a standard deviation of the realized quantities. The horizontal axis shows the correlation

between the determinant of the platform indicator D and unobserved determinants of expected

sales Z. The upper panels describe COO tests based on regressions of platform ranks (and log

ranks) on the observable X and the platform dummy D. The bottom panels describe OB tests

based on regressions of realized sales (and log sales) on rank fixed effects and the platform

dummy D. Yellow indicates a high probability of finding the true bias direction, while darker

colors indicate lower probabilities. Each cell in each figure reflects percentages based on 500

draws.
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Figure 2: Actual and debiased ranks

Panel A: Amazon Kindle Daily deals
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Note: The figures show kernel density plots of rankings for the potentially platform-favored products. The

left figure describes Amazon Publishing books in the Kindle Daily Deal pages, and the right figure describes

chain hotel rankings in Expedia searches. The solid lines show observed ranking distributions, the dashed

lines show distributions of our model’s actual rankings, and the dotted lines show our model depictions of

debiased rankings.
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Figure 3: Actual and debiased welfare outcomes
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Note: The figures show the welfare frontiers arising from rankings that maximize weighted sums of revenue

and consumer surplus for Amazon (left) and Expedia (right), as percentages of maximum revenue (x axes)

and maximum consumer surplus (y axes). The points along the frontiers are outcomes associated with the

model depictions of debiased rankings, showing the platforms’ relative dispositions toward consumers vs

sellers. The deviation between “actual” points (+), interior to the frontiers, and the debiased points shows

the welfare cost of the bias in actual rankings.
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Table 1: Bias test comparisons

Panel A: Amazon Kindle Daily deals

COO Outcome-based

(1) (2) (3) (4)
ln rank ln quantity ln quantity rank-ind ln(q)

Amazon -0.269∗∗∗ -0.696∗∗∗ -0.714∗∗∗

(0.025) (0.042) (0.042)

ln rank -0.266∗∗ -0.190∗∗∗

(0.106) (0.018)

ln price 0.049∗∗∗ -0.306∗∗∗ -0.523∗∗∗ -0.304∗∗∗

(0.012) (0.020) (0.023) (0.020)

Observations 6796 6826 6617 6826

Panel B: Expedia hotels

COO Outcome-based

(1) (2) (3) (4)
rank 1(buy) 1(buy) rank-ind pr

chain 0.57107∗∗∗ 0.00821∗∗∗ 0.00719∗∗∗

(0.00728) (0.00021) (0.00021)

rank -0.00040∗∗∗ -0.00407∗∗∗

(0.00001) (0.00001)

price 0.01236∗∗∗ -0.00017∗∗∗ -0.00018∗∗∗

(0.00005) (0.00000) (0.00000)

Observations 5971587 5971587 2568446 5971587

Panel C: Spotify New Music Monday

COO Outcome-based

(1) (2) (3) (4)
rank log streams log streams rank-ind ls

major label -1.212∗∗∗ 0.385∗∗∗ 0.440∗∗∗

(0.087) (0.036) (0.037)

rank -0.126∗∗∗ -0.106∗∗∗

(0.003) (0.003)

Observations 18233 18489 13467 18489

Note: Column (1) of each panel implements a COO test with a regression of rank on (un-
reported) observables and a platform-preferred product indicator: “Amazon,” “chain,” and
“major label.” Column (2) implements the OB approach with regressions of sales outcomes on
rank fixed effects and the platform indicator. Column (3) measures the causal rank effect using
product fixed effects or (for Expedia) order randomization. Column (4) reports regressions of
rank-independent outcomes on ranks, allowing quantification of the rank bias based on the OB
test. All models are estimated using OLS.
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Table 2: Amazon demand and supply estimates

demand supply

(1) (2) (3)
logit linear r.o. logit

price -0.0391∗∗∗

(0.00435)

ln rank -0.405∗∗∗

(0.0272)

Amazon product -0.669∗∗∗ -64.20∗∗∗ 12.74∗∗∗

(0.0452) (0.663) (0.169)

ln daily pre-promo sales 0.0406∗

(0.0226)

ln price -19.11∗∗∗ 3.815∗∗∗

(0.294) (0.0592)

rank-indep mean util -93.76∗∗∗ 19.26∗∗∗

(0.995) (0.261)

Observations 6826 6826 6826

Note: Column (1) presents logit estimates of the demand for ebooks offered in the Kindle Daily
Deal. “Amazon product” refers to a title published by Amazon. An observation is a promotion-
day title, and we include two days of data for each promotion. Column (2) reports a linear
regression of the platform-chosen rank on its log price and its rank-independent mean utility,
along with the Amazon indicator. The regression includes promotion-day fixed effects. Column
(3) reports the analogous specification using a rank-order logit model, with promotion days as
groups and normalized so that positive coefficients deliver better ranks. Robust standard errors
are reported in parentheses.
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Table 3: Expedia demand and supply estimates

(1) (2) (3) (4)
c logit logit linear r.o. logit

price -0.00763∗∗∗

(0.0000502)

rank -0.129∗∗∗

(0.000374)

# reviews 0.171∗∗∗

(0.00304)

stars 0.275∗∗∗

(0.00355)

chain 0.127∗∗∗ 2.296∗∗∗ -0.623∗∗∗

(0.00524) (0.00486) (0.00123)

location score 0.0954∗∗∗

(0.00270)

inclusive value 0.535∗∗∗

(0.00681)

ln(price) -8.552∗∗∗ 2.391∗∗∗

(0.00546) (0.00181)

rank-indep mean util (δ0j ) -10.73∗∗∗ 3.638∗∗∗

(0.00319) (0.00169)

Observations 6,196,924 397,720 6,640,113 6,640,113

Note: Columns (1) and (2) together provide nested logit estimates of demand. Column (1)
reports conditional logit estimates on the choice of hotels, among the organic hotel searches.
Column (2) reports a logit on the decision to book a hotel, and it is estimated across both
randomized and organic searches. The coefficient on the inclusive value is the substitution
parameter σ. Column (3) reports a linear regression of the Expedia search rank on its log
price and its rank-independent mean utility, along with the chain hotel indicator, using organic
searches. The regression includes hotel search fixed effects. Column (4) reports the analogous
specification using a rank-order logit, with searches as groups and normalized so that positive
coefficients deliver better ranks. Robust standard errors are reported in parentheses.
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Table 4: Welfare effects of bias

Amazon Expedia

welfare change from bias
% ∆CS -3.30 -0.057
% ∆REV -5.30 -0.232

debiased point on frontier
CS relative to CSmax 0.989 0.976
REV rel to REV max 0.902 0.878

Note: This table shows results from the structural model, for Amazon’s Kindle Daily Deal
pages (left column) and Expedia’s hotel search rankings (right column). The top panel shows
CS and revenue forgone with the model’s depiction of actual rankings relative to the debiased
rankings. The bottom panel shows CS and revenue attained from the debiased rankings relative
to the maximum levels of CS and revenue on the frontier. Because of data shortcomings
discussed in the text, the results are best viewed as illustrative of the method.
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A Appendix

A.1 Evaluating our proposed welfare frontier

This section discusses the accuracy of our proposed welfare frontier. Ranking products by

rank-independent mean utility delivers CS maximization. The other endpoint of the welfare

frontier is more complicated. Our proposed solution for maximizing revenue is to order

products according to pje
δ0j , a ranking we term Rmax Rev.

Total revenue per consumer in the market is given by∑
j∈J pje

δ0j eγrj

1 +
∑

j∈J e
δ0j eγrj

.

A switch in the ranking order away from Rmax Rev necessarily reduces the numerator of this

formula. Hence, revenue can only rise if such a switch reduces the denominator proportion-

ally more than it reduces the numerator.

This, in turn, occurs when the ratio of the changes to the numerator and denominator of

the total revenue function exceed the per-consumer total revenue with our proposed ranking.

Suppose product a has a higher rank-independent revenue than product b: pae
δ0a > pbe

δ0b ,

so that our proposed ranking would entail ra < rb. Rearranging terms, revenue rises with a

switch of the rankings of the two products a and b if:

pae
δ0a − pbe

δ0b

eδ0a − eδ
0
b

<

∑
j∈J pje

δ0j eγrj

1 +
∑

j∈J e
δ0j eγrj

.

To see how violations are unlikely, it is helpful to consider a variant of this inequality replacing

the per-person total revenue (the current RHS) with average revenue among products sold.

This would be achieved by removing the 1 from the denominator. That inequality would

hold any time the marginal revenue of the switch (the current LHS) fell short of the average

price. The actual denominator of the per-person total revenue expression is much higher,

substantially reducing the probability that the inequality holds (and hence that our proposed

ranking could be improved).

We explore this with our data from Amazon. Permutations – switching adjacently ranked

products – deliver higher revenue than our proposed solution in 6 of 3,800 cases. When

reversals occurred, the Rmax Rev ranking delivered at least 99.99981% of the revenue of the

alternative. Hence, our approach delivers virtually all of the maximal revenue that we
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calculate; and permutations of non-adjacent products produced no revenue increases.

Beyond exploring revenue violations, we can also look for permutations that deliver out-

comes beyond the entire frontier. Our proposed welfare frontier arises from ranking products

according to the weighted sum, κ1 ln(pj) + κ2δ
0
j . We use Amazon data to create a proposed

frontier using an 11-point grid of weighted sums of (κ1, κ2) from (0, 1) to (0.5, 0.5), as de-

picted in Figure 3. To evaluate our proposed solution, we calculate how often permutations

of adjacently-ranked products increase revenue and/or CS. For each rank position, promo-

tion day, and location along the 11 grid points on the proposed frontier (41,800 observations

in total), we calculate whether CS and/or revenue based on the permuted ranks exceeds the

proposed frontier value. None of the permutations deliver a direct violation such that both

CS and revenue lie beyond the pre-permutation proposed frontier.

A.2 Unbiased commissions with positive marginal costs

When selling third-party product j, the platform receives a commission cj that is proportional

to the price. The platform maximizes its revenue by ranking products according to cjpje
δ0j .

When marginal costs are zero, so that the price reflects per-unit variable profits, a constant

commission across products (cj = c∀j) would lead to the Pareto frontier and would reflect

the absence of platform bias.

If marginal costs are positive, per-unit seller surplus is v = p −mc and not simply the

price. Hence, maximization of seller surplus would be achieved by ranking products according

to vje
δ0j rather than pje

δ0j . The platform would naturally achieve the welfare frontier if a

constant commission τ were levied against v rather than p. Given that commissions are

charged against prices, however, it is of interest to derive unbiased commissions for the case

with positive marginal costs.

We can calculate a commission cj levied against the price pj that is equivalent to a

proportional commission τ on v. Slight rearrangement of cjpj = τ(pj −mcj) gives

cj = τ
pj −mcj

pj
.

That is, product j’s PS-maximizing commission is proportional to the share of the price that

is a markup over marginal cost. A platform facing these commissions and maximizing its

own revenue would also maximize overall seller surplus.
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