A Framework for Detection, Measurement, and Welfare Analysis of Platform Bias

Imke Reimers

Joel Waldfogel

Cornell University

University of Minnesota

DMA and Beyond

February 6, 2025

DMA: "Self-preferencing" is now illegal

- Regulatory action is ahead of research
- Urgent need to detect and measure welfare consequences of self-preferencing
- But: identifying *unwarranted* self-preferencing is not straightforward

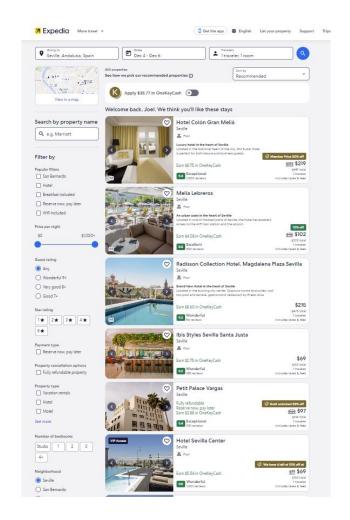
• Some basic questions:

- What is self-preferencing?
- How do we detect it?
- What is its welfare cost?

Generic setup: search result rankings

- Users choose among (ranked) product lists
- The platform chooses ranks to serve an objective
 - Consumers, sellers, the platform itself

- One possible definition of self-preferencing:
- The platform ranks its own products higher than would maximize some combination of seller and consumer surplus



Roadmap

- A simple theoretical framework
- Use the theory to compare 2 methods for bias detection
 - Conditioning on observables (COO) vs outcome-based (OB) tests
- Data and empirical comparison
 - ...confirming conflicts between COO and OB
- Structural model and estimates of rank bias and welfare effects
 - ... meaningful differences across settings

Model

Model

- **◆** Two parts:
 - Consumers choose among ranked products; better rankings → higher purchase probability
 - The platform chooses among *N*! possible rank orderings
- The platform decides:
 - a) how to balance interests of consumers and sellers, and
 - b) how much to advance its own interest at the expense of consumers & sellers
- Without self-preferencing:
 - Search rankings lead to a welfare frontier between max CS and max PS
- With platform bias (e.g., self-preferencing):
 - rankings depart from the frontier

Implementation needs and model choice

- Need a way to map <u>product characteristics</u>, <u>prices</u> and <u>platform-chosen ranks</u> into **quantities sold**, **total revenue**, and **CS** for the choice set
- Various possible demand approaches
 - Search models (Ursu, Seiler, Honka (2023))
 - Limited information choice models (Goeree (2008), Abaluck and Adams-Prassl (2021))

- Here, we want to illustrate, simply
 - Logit (and NL)

Consumer side

• Consumer *i* chooses among *J* ranked products

$$u_{ij} = \delta_j^0 + \gamma r_j + \epsilon_{ij}$$
causal rank effect

• Mean utility:

$$\bar{u}_j = \delta_j^0 + \gamma r_j$$

• Rank-independent mean utility: δ_j^0

(Or the outside good, $u_{i0} = 0$)

Note: δ_j^0 is related to r_j beyond the causal effect of platform rank choice: the platform ranks better products higher

Outcomes depend on ranking R via $e^{\gamma r_j}$ term

• Probability of purchasing product *j*:

$$s_{j}(R) = \frac{e^{\delta_{j}^{0}} e^{\gamma r_{j}}}{1 + \sum e^{\delta_{j}^{0}} e^{\gamma r_{j}}}$$

• Gross seller surplus across products:

$$PS = PS(R)$$

• Consumer surplus:

$$CS = CS(R)$$

- (No evidence of price changes when rank algos change)
- (still, we allow for price changes later)

The platform's ranking choice

- ◆ Big combinatoric problem (N! choices)
 - See Compiani, Lewis, Peng, Wang (2021)
- Simplify, starting with two welfare frontier extremes:
- a) Maximize CS: rank in descending order of rank-independent mean utility δ_i^0
- b) Maximize PS: rank by rank-independent var. profit $(p_j c_j)e^{\delta_j^0}$
- → The welfare frontier comes from weighted sums of these two

For exposition, assume c = 0

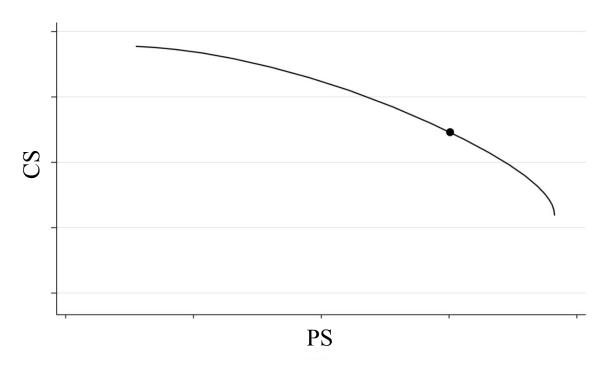
Welfare frontier

- Ranks according to $p_j e^{\delta_j^0}$ maximize revenue (PS)
- Ranks according to $e^{\delta_j^0}$ maximize CS

• Hence, define a frontier based on

$$I_j^* = \kappa_1 \ln(p_j) + \kappa_2 \delta_j^0$$

- Endpoints
 - $\kappa_1 = \kappa_2 > 0 \Leftrightarrow PS \max$
 - $\kappa_1 = 0, \kappa_2 > 0 \Leftrightarrow CS \max$



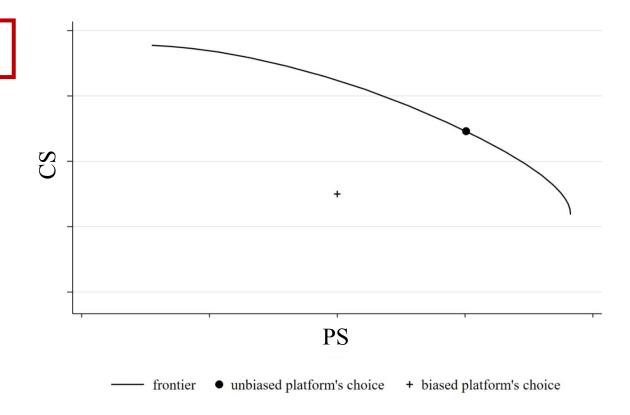
frontier • unbiased platform's choice

Add possible bias

- Ranks according to $p_j e^{\delta_j^0}$ maximize revenue (PS)
- Ranks according to $e^{\delta_j^0}$ maximize CS
- Possible bias
- Hence, the platform supply function:

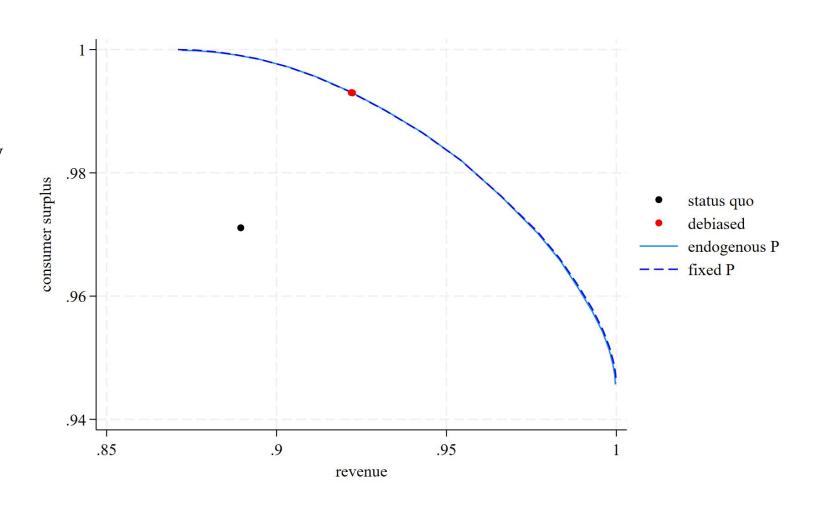
$$I_j = \kappa_1 \ln(p_j) + \kappa_2 \delta_j^0 + \psi D_j$$

- $\psi \neq 0$ is bias, and it changes ranking
- Delivers a solution interior to frontier



Finally, a note on the full equilibrium

- The above leaves out firm responses to ranking algorithms
 - They might change prices if they know they will be ranked more highly
 - But it turns out prices wouldn't change much



From theory to bias tests

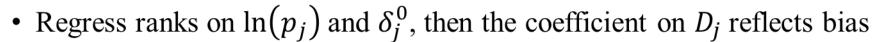
Using the platform supply function

Supply function and bias detection: COO

$$I_j = \kappa_1 \ln(p_j) + \kappa_2 \delta_j^0 + \psi D_j + \varepsilon_j$$

- Suppose the index is cardinal and linear
- Then:

$$r_j = \kappa_1' \ln(p_j) + \kappa_2' \delta_j^0 + \psi' D_j + \varepsilon_j$$



• This is the "conditioning on observables" (COO) approach

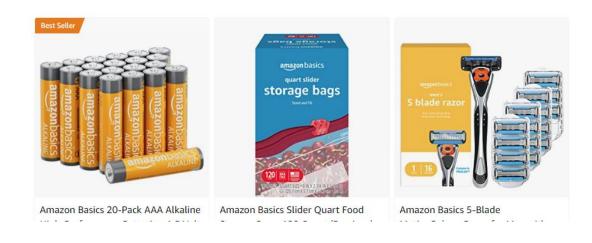
Hard to observe

COO implementation in practice

- Normally, we don't observe δ_i^0
- Instead, regress ranks on "controls" and D_i :

$$r_j = X_j \beta + \kappa \ln(p_j) + \psi D_j + \varepsilon_j$$

- ψ provides a measure of **bias** if X_i controls for *all* effects on demand
- But ψ could also reflect unobserved platform brand characteristics



Supply function and bias detection: OB approach

Suppose a platform & a non-platform product have the same index value I_j

- Platform product: $\kappa_1 \ln(p_j) + \kappa_2 \delta_j^0 + \psi D_j$
- Non-platform product: $\kappa_1 \ln(p_k) + \kappa_2 \delta_k^0$

Monte Carlo simulations: OB test more reliable than COO

• If $\psi > 0$, then the platform product at the same rank is "worse"

$$\ln(q_j) = \mu_r + \kappa \ln(p_j) + \psi D_j + \varepsilon_j$$
Proxy for δ_i^0 rank FEs

Implementation and data needs

Rankings, platform identifier, and ...

- Conditioning on observables approach:
 - characteristics legitimately predictive of ranks/sales
- Outcome-based approach:
 - outcomes caused by the ranks

- (Welfare analysis:
 - The above, plus causal rank effect estimates)

"Real-world" illustrations

(Illustrative) data and contexts

- Amazon Kindle Daily Deals 2022
 - 50 ranked titles each day
 - ≈20% published through Amazon: possibility of self-preferencing
- Expedia hotel searches 2013
 - 399,342 searches and 8,624,781 listings (121,545 randomized searches)
 - No self-preferencing. Possible bias with respect to chain hotels?
- Spotify New Music Friday 2017
 - 20 (of 50) ranked songs x 26 countries $x \approx 35$ weeks
 - 18,489 listings; 6,637 appearing in top 200
 - Possible bias with respect to major labels?

Compare COO and OB: Amazon (an illustration)

- Both indicate self-preferencing
- Rank magnitudes differ

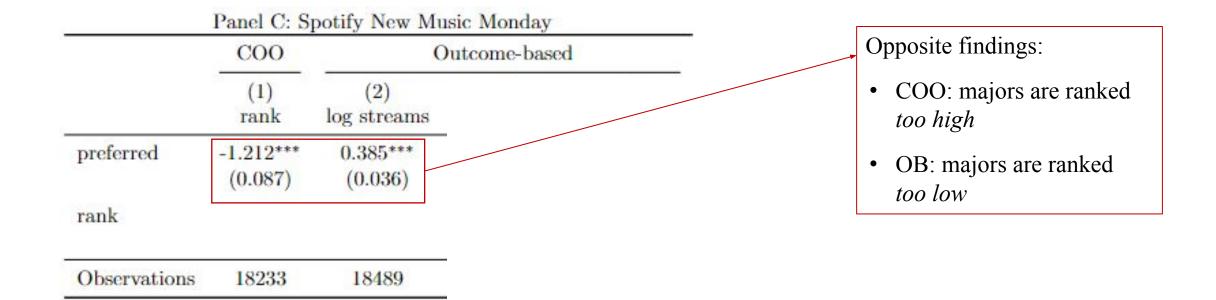
	COO	Outcome-based		
	(1) In rank	(2) In quantity		
preferred	-0.269*** (0.025)	-0.696*** (0.042)		
ln rank			I	
ln price	0.049*** (0.012)	-0.306*** (0.020)		
Observations	6796	6826	_	

Compare COO and OB: Expedia

Panel B: Expedia hotels				
	COO	Outcome-based		
	(1) rank	(2) pr(buy)		
chain	0.68104*** (0.00866)	0.00811*** (0.00021)		
rank				
promoted	0.14393*** (0.03203)			
price	0.01484*** (0.00006)	-0.00017*** (0.00000)		
Observations	6048717	6048717		

Both find chain hotels are ranked "too low"

Compare COO and OB: Spotify



Bottom line: field data confirm Monte Carlo results (and general concerns about COO approach)

Structural approach

Platform preferences and welfare implications of self-preferencing

Structural model: Amazon

• Demand estimated as plain logit

$$\ln(s_j) - \ln(s_0) = x_j \beta + \alpha p_j + \gamma r_j + \xi_j$$

- X contains an Amazon dummy and pre-promotion sales
- \rightarrow The estimated values, minus (causal) γr_j , give us $\hat{\delta}_j^0$

• Supply: rank-ordered logit $r_j = \kappa_1 \ln(p_j) + \kappa_2 \hat{\delta}_j^0 + \psi D_j + \epsilon_j$

Amazon estimates

• Demand

- Causal part of rank effect = 0.335 from title FE approach
- Allows calculation of δ_j^0

Supply

- Linear (intuitive): higher δ_j^0 gets better rank, as does higher price
- Platform product gets better rank
- Same pattern in rank ordered logit

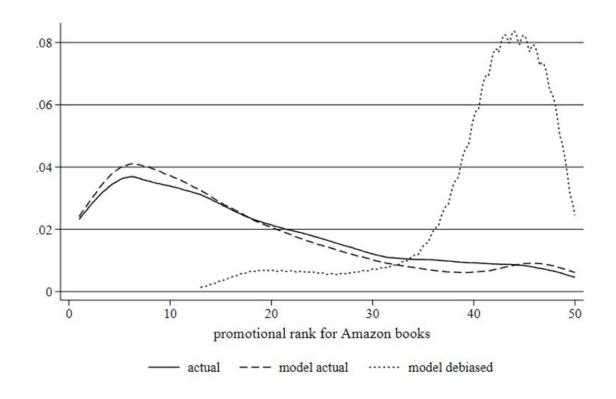
Table 2: Amazon demand and supply estimates

	demand	
	(1) logit	
price	-0.0391*** (0.00435)	
ln rank	-0.405*** (0.0272)	
platform product	-0.669*** (0.0452)	
ln daily pre-promo sales	0.0406* (0.0226)	
ln price		
rank-indep mean util		
Observations	6826	

Model: actual vs debiased ranks

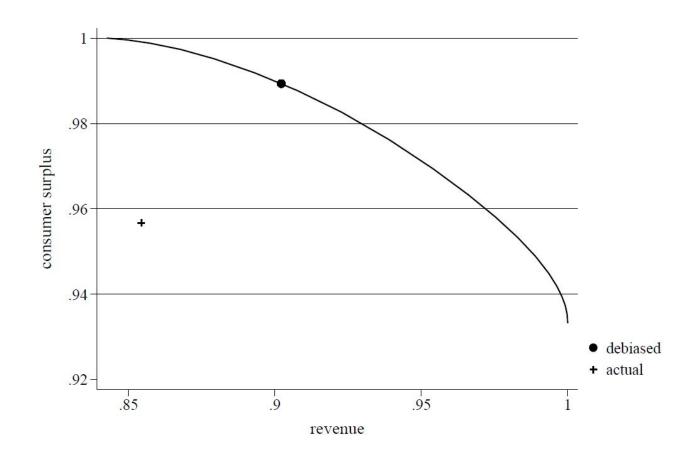
Can re-calculate rankings after setting the "bias" parameter to zero

Panel A: Amazon Kindle Daily deals



CS vs PS & bias

Panel A: Amazon Kindle Daily deals



• Debiased point near CS max, further from rev max

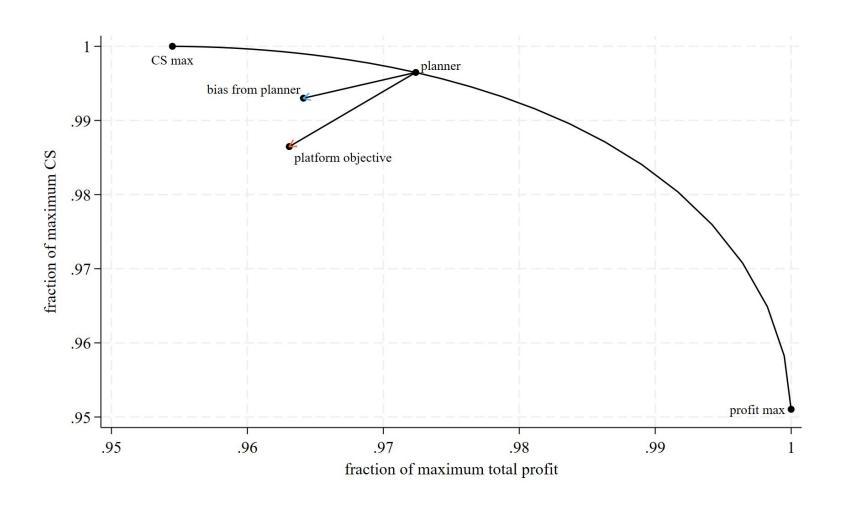
• Bias forgoes 3.3% of debiased CS, 5.3% of debiased PS

Note: where can "bias" come from?

- Source 1: the platform wants to give its own products preferential treatment
 - "Naked" self-preferencing

- Source 2: the platform cares about its commission
 - If compensated at proportional commission, the platform likes revenue
 - \square Is this illegal under the DMA?

Illustration: different platform objectives



Where else can "bias" come from?

- Source 3: the platform cares about things other than PS and CS
 - E.g., star ratings, return policies, ...
 - These can be "accidentally" correlated with the platform dummy
 - \square Is this illegal under the DMA?

Conclusion

• Platform regulation: We need ways to test for, and evaluate, possible bias

- This paper presents a possible definition
 - As well as ways to test for, and measure welfare effects of, such bias

• Data access is hard for outsiders, but we hope this framework is useful for regulators