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Abstract

We study the development of apps on competing platforms. We show that

competition leads to commissions exceeding those maximizing consumer surplus

(and, a fortiori, social welfare) whenever raising one commission reduces rivals’

app bases. We relate this finding to economies of scope in app development

and, to illustrate it, consider a setting in which some developers can port their

apps at no cost: as their proportion increases, app development is progressively

choked-off.

Fostering platform competition or interoperability may therefore fail to pro-

duce the desired results. Within-platform app store competition, together with

appropriate access conditions, may constitute a more promising avenue.
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1 Introduction

The 30 percent commission charged by Apple and Google has prompted major dis-

putes, such as the legal battle led by Epic Games,1 and triggered policy initiatives

around the world. For instance, to reduce the commissions paid by app developers,

the South Korean parliament adopted in 2021 a bill banning major app store operators

– such as Google and Apple – from requiring developers to only use the app stores’

payment systems. Later on, the Indian Competition Commission issued a similar or-

der.2 In 2022, the European Union adopted the Digital Markets Act, which requires

gatekeepers to apply fair, reasonable and non-discriminatory conditions of access to

app stores, among others.3

The main concern about Apple’s and Google’s commissions is their negative impact

on app development; a crisp summary was provided by Brent Simmons, a Mac and

iOS app developer, in his testimony before the U.S. Congress:

“[T]he more money Apple takes from developers, the fewer resources developers

have. .... They decide not to make apps at all that they might have made were it

easier to be profitable.”4

In response, Apple and Google argue that platforms and consumers have a common

interest in attracting apps, and moreover point to the disciplining role of platform

competition. For instance, in its response to the investigation of the Dutch National

Competition Authority (NCA), Google argues:

“The level of the commission fee charged is used by app stores to compete with

each other, as a means to attract app providers on their platform.”5

Regulators have however expressed doubt about the extent to which the largest

platforms are subject to competitive pressure and pointed instead to substantial switch-

ing costs and behavioral biases among consumers – see, e.g., U.K. Competition and

Markets Authority (2022) and U.S. Department of Justice (2024).

To shed some light on this debate, we study a setting in which two-sided platforms

compete on prices for consumers and on ad valorem commissions for apps. Consumers

single-home and benefit from the platform’s service and the available apps, whereas

app developers, who derive their revenue from consumers but face heterogeneous in-

1In August 2020, Epic started encouraging mobile-app users of its Fortnite game to adopt Epic’s
payment option, offering a 20% discount from Apple’s or Google’s in-app purchase. In response,
Apple and Google removed Fortnite from their respective app stores, which led Epic to sue Apple
and Google, with the backing of Microsoft, Facebook, Spotify, Match Group and ten other companies.

2See https://cci.gov.in/images/pressrelease/en/pr-no-562022-231666698260.pdf.
3See Article 6.12.
4See Subcommittee (2020), at p. 350. In the same vein, see Greg Bensinger’s article, “What

Apple’s Fortnite Fee Battle Is Really About,” the New York Times, https://www.nytimes.com/

2020/09/24/opinion/apple-google-mobile-apps.html.
5Netherlands Authority for Consumers and Markets (2019), at p. 92.
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vestment costs, may single- or multihome.

Our main finding is that platform competition may not be a cure but, rather, an

obstacle to app development. Specifically, we find that, where the commissions maxi-

mizing consumer surplus would also maximize platforms’ joint profit (but exceed those

favored by developers), competition generates instead higher commissions whenever an

increase in one commission reduces the number of apps present on the rival platform.

This, in turn, occurs whenever there are (supply-side or demand-side) economies of

scope in app development, as investment decisions are then more likely to be driven

by both platforms’ commissions.

Our analysis thus highlights a key factor, namely, the extent to which app devel-

opment is driven by the overall business opportunities offered by the two platforms.

In practice, due to the lack of consumer multihoming on the consumer side, successful

apps tend indeed to be present in both platforms; for instance, the U.K. Competition

and Markets Authority notes:

“Most large and popular third-party apps are present on both Apple’s iOS and

Google’s Android. For example, we have estimated that 85% of the top 5,000 apps on

the App Store also list on the Play Store and vice versa.”6

In a similar vein, the Dutch NCA finds that consumers’ initial choice between an

iPhone and an Android phone does not depend on the availability of apps, because

all popular and known apps are present in both smartphone platforms.7 Furthermore,

the recent complaint of the U.S. Department of Justice (2024) against Apple points

to “intrinsically multihoming” apps which, because of restrictions imposed by Apple,

were not developed either for Android phones.8

The Chinese app store market provides further evidence on the relation between

platform competition and the commissions charged to developers. In that market,

where Google Play Store is not available and Apple has less than 20 percent market

share, there is vivid competition among multiple Chinese smartphone manufacturers,

all based on the Android operating system. Yet, the major Chinese manufacturers (e.g.,

Xiaomi, Oppo, Vivo, and Huawei), who own their own app stores, charge a 50 percent

commission to app developers.9 Hence, intense platform competition is associated with

even higher commissions than those charged by Google and Apple. This is in line with

our analysis, as we find that increasing the number of platforms amplifies the gap

between the equilibrium commission and the consumer-surplus maximizing one and

6U.K. CMA (2022), p. 121.
7See Netherlands Authority for Consumers and Markets (2019).
8See the discussion at the end of Section 3.
9See for instance “China’s App Store Fee’s Make Apple’s Look Cheap” by Zheping

Huang, Bloomberg, 8 October, 2020, https://www.bloomberg.com/news/newsletters/2020-10-

08/china-s-app-store-fees-make-apple-s-look-cheap.
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further discourages the development of multihoming apps – by contrast, the degree of

substitution among platforms appears to play a less important role.

These insights suggest that platform competition may not discipline the commis-

sions charged to developers.10 In the same vein, policies designed to foster platform

interoperability – and, thus, economies of scope in app development – may result in

higher commissions.

Because Apple and Google have charged the same commission since the launch of

their app stores, throughout the paper we assume that platforms compete for apps

before competing for consumers. That is, in a first stage, platforms set their commis-

sions, and in response developers make their investment decisions. Therefore, when

competing later on for consumers, each platform benefits from a per-consumer subsidy,

corresponding to the value – for the platform and its consumers – generated by the

apps available on the platform. It follows that platforms’ joint interest is aligned with

consumers’ own interests, as larger subsidies result in both greater profits and lower

prices; maximizing industry profit or consumer surplus thus boils down to maximizing

the subsidies. By contrast, app developers favor lower commissions; hence, maximizing

social welfare requires lower commissions than those that maximize consumer surplus

or the platforms’ profits.

To compare these benchmarks with the competitive outcome, we begin with a

stylized approach that imposes minimal assumptions on developers’ response to the

commissions, and on the prices and profits stemming from the resulting subsidies. If

a platform’s commission does not influence its rival’s app base, it does not affect the

rival’s subsidy either. In this case, in equilibrium each platform selects the commission

that maximizes its own subsidy. Consequently, consumer surplus is also maximized.

If instead an increase in one platform’s commission decreases (resp., increases) the

rival’s app base, the platforms have an additional incentive to raise (resp., lower) their

commissions, in order to make their rival less aggressive. As a result, competition

leads to commissions that are above (resp., below) the level that maximizes their own

subsidy and, consequently, consumer surplus.

We relate these insights to the existence of (dis-)economies of scope in app develop-

ment. When development costs are independent across platforms, raising a platform’s

commission has no impact on the rival’s app base; the competitive outcome therefore

maximizes consumer surplus. When instead there are economies (resp., diseconomies)

of scope, raising a platform’s commission reduces (resp., increases) the rival’s app

base; the equilibrium commissions then exceed (resp., lie below) the level maximizing

consumer surplus.

10Within-platform competition between third-party app stores may provide a more promising av-
enue.
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We also note that our insights carry over when platforms charge wholesale prices

rather than commissions, but no longer hold when instead they charge fixed fees. This

is because wholesale prices, like ad valorem commissions, affect platforms’ profit only

through their subsidies when competing for consumers. By contrast, fixed fees have

a direct impact on platforms’ profits, other than through the subsidies. As a result,

platforms’ joint interest is no longer aligned with consumers’.

To gain further insights, we consider a particular setting with horizontal differen-

tiation à la Hotelling on the consumer side and two types of developers on the app

side: independent decision markers face platform-specific development costs, whereas

joint decision makers can port their apps across platforms at no cost, and thus base

their development decisions on the overall profitability offered by the two platforms.

We show that, as long as there is a positive proportion of joint decision makers, plat-

form competition leads to a higher commission than what would maximize consumer

surplus. Furthermore, as this proportion tends to one, the commissions become so

high that the app development is progressively choked-off. The intuition is that a

platform has little incentive to encourage the development of apps when most of these

apps become also available on the competing platform. By contrast, a monopolistic

firm running both platforms would seek to encourage app development – and actually

choose the commissions that maximize consumer surplus. Interestingly, neither the

monopolistic nor the competitive levels of the commissions depend on the degree of

substitution between the two platforms.

Finally, we extend our analysis in two directions. In section 5.1, we consider a

generalization of the Hotelling setting that accommodates an arbitrary number of

competing platforms. The degree of substitution between the platforms has again no

impact on the commissions, but increasing the number of competing platforms raises

further the commissions. In section 5.2, we introduce uncertainty about the popularity

of apps and allow them to be ported if they are successful. We show that platform

competition leads again to commissions exceeding the level that maximizes consumer

surplus whenever popular apps (which eventually become available on both platforms)

play a significant role, as is the case in practice.

Related literature. To study developers’ innovation incentives, we build on the model

of competitive bottlenecks developed by Armstrong (2006), with single-homing on one

side of the market, and multihoming with independent participation decisions on the

other side. A key finding is that, in equilibrium, the number of users on the latter side

maximizes the joint surplus of the platform and its other users. Armstrong and Wright

(2007) find conditions under which single-homing on one side and multihoming on the

other side arise endogenously. Belleflamme and Peitz (2010) extend Armstrong (2006)
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by allowing sellers to invest and improve their offerings, and find that sellers invest less

than is socially desirable when sellers multihome and buyers single-home. Choi and

Jeon (2022) study platform design in a model of competitive bottlenecks and identify

the design biases (e.g., in the direction of innovation) generated by different platform

business models. Teh and Wright (2023) extend Armstrong’s competitive bottleneck

model to an oligopoly setting in which platforms can use multiple instruments on the

multihoming side. They focus on symmetric equilibria featuring full coverage and

show that Armstrong’s original insight holds in the absence of spillovers on the rival

platforms. Armstrong’s competitive bottleneck result has also been revisited by Etro

(2023), who studies sequential competition in a setting corresponding to our Hotelling

model with independent decision makers, and shows that platform competition then

leads to commissions that maximize consumer surplus; the platforms’ profits being

independent of the level of the commissions in the Hotelling setting, this extends

Armstrong’s insight to a context of sequential competition.

We contribute to this literature in three ways. First, we further extend Armstrong’s

insight to more general sequential settings, with only minimal assumptions on app

supply and consumer demand (in particular, we allow the total demand to be elastic).

Specifically, the literature on competitive bottlenecks usually considers simultaneous

pricing decisions on both sides, followed by simultaneous participation decisions on

both sides. Our interest on app stores in mobile platforms leads us to focus instead

on a setting in which pricing and development decisions on the app side take place

before platforms’ competition for consumers. As noted above, this competition is

then driven by the subsidies generated by the apps available on each platform and,

as a result, platforms’ and consumers’ interests are fully aligned – they all wish to

maximize these subsidies. Furthermore, if app development decisions are independent

across platforms, then the commission set by a platform only affects the platform’s own

subsidy, and Armstrong’s insight carries over – with the twist that competition leads

to commissions that maximize both platforms’ profit and consumer surplus, rather

than only the sum of them.

Second, we show that Armstrong’s insight no longer holds when development de-

cisions are interdependent: platform competition yields instead higher (resp., lower)

commissions when developing an app for one platform encourages (resp., discourages)

its development for the other platform. We further related this to the presence of (dis-

)economies of scope. Third, we show that these insights carry over when platforms

compete in wholesale prices instead of ad valorem commissions, but no longer hold if

they compete instead in fixed fees; in particular, competition fails to maximize plat-

forms’ and consumers’ joint payoff even when development decisions are independent.

An earlier related paper is Wright (2002), who studies the market for fixed-to-
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mobile calls. Mobile network operators (MNOs) compete to attract consumers and

charge fixed-to-mobile termination fees to a fixed-line network operator. If that opera-

tor is constrained to charge the same price for all fixed-to-mobile calls, then the MNOs

set termination fees higher than the monopoly fee; in particular, if two MNOs compete

à la Hotelling, the termination fees are so high that there are no fixed-to-mobile calls, a

finding similar to our choke-off result. However, several differences can be noted. First,

mobile subscribers are supposed to derive zero utility from fixed-to-mobile calls and

are thus insensitive to the level of the termination fees. By contrast, in our setting con-

sumers enjoy the applications and thus indirectly care about the commissions charged

on the app side as well as about the device prices on the consumer side. Second,

the choke-off of fixed-to-mobile calls stems from a non-discrimination rule imposed on

the fixed-line network, whereas in our setting, the choke-off of app development arises

instead when all developers make joint development decisions.11

Anderson and Bedre-Defolie (2024) consider a monopoly platform facing consumers

with heterogeneous preferences for app quality, which prevents the platform from fully

capturing the benefits from better apps. They show that the platform charges too

high prices on both sides, yielding insufficient app quality and limited consumer par-

ticipation. Furthermore, capping the app commission would enhance the app base

but prompt the platform to raise its consumer price, to such an extent that consumer

surplus would be reduced. We consider instead platform competition in a classic com-

petitive bottlenecks setting, in which consumers have homogeneous preferences (at

least ex ante), which enables the platform to appropriate the benefits from additional

apps. We moreover focus on the volume of the app bases, which leads us to consider

differences in development costs rather than in quality. As long as platforms compete

for consumers, the commission maximizing their profit also maximizes consumer sur-

plus (but exceeds the level maximizing total welfare); yet, competition leads to higher

commissions whenever app development exhibits economies of scope.

Roadmap. We describe the general setting in Section 2. In Section 3, we adopt a

stylized approach to present our key insights. In Section 4, we illustrate them in the

context of a fully specified model with horizontally differentiated platforms and either

joint or independent app development decisions. We study extensions in Section 5,

and discuss policy implications in Section 6.

11Furthermore, in a previous version, we found that a complete choke-off no longer arises when
platforms charge wholesale prices instead of ad valorem commissions on the app side.
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2 Setting

Two platforms, P1 and P2, compete for (single-homing) consumers and (single- or

multihoming) apps. On the app side, platforms set ad valorem commissions; app

developers, facing heterogeneous investment costs, then decide on which platform(s)

to invest, if any. On the consumer side, platforms set access prices; consumers then

choose which platform to join, if any. This setting corresponds for example to the

two leading mobile OS platforms (iOS and Android, with their app stores, App Store

and Google Play), interpreting consumer prices as the prices of the devices (iPhone

or Android phone), and treating for simplicity the Android platform as vertically

integrated, like the iPhone platform.

We now present the model in more detail.

• Consumers. There is a continuum of consumers, each endowed with a stochastic

value v for each app, drawn (independently across consumers and apps) from a distri-

bution with c.d.f. G (·) over R+ and observed only after joining a platform. Let

d (p) ≡ 1−G (p) and s (p) ≡
∫ +∞

p

d (p̂) dp̂

denote consumers’ expected demand and surplus from an app offered at price p. The

resulting profit, π(p) ≡ pd(p), is assumed to be maximal for some price pm.

Each consumer also enjoys a platform-specific intrinsic utility ui, for i = 1, 2.

Hence, if Pi charges a price pi and attracts yi apps, each offering an expected surplus

si, then the net payoff from joining Pi is12

ui + siyi − pi = ui − Pi,

where

Pi ≡ pi − siyi

denotes Pi’s “quality-adjusted” price. The intrinsic utilities are distributed in such a

way that the demand for Pi is13

D (Pi, Pj) > 0,

which features (imperfect) substitution: ∂2D(·) > 0.

12For simplicity, each app belongs to a different category and consumers only care about their
number. More generally, quality and diversity could matter as well, both within and across categories.

13The analysis readily extends to the case where D(·) = 0 for high enough prices, with ∂2D(·) > 0
and Assumption 1 below holding whenever D(·) > 0.
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• Developers. Apps being digital goods, their only costs are fixed investment costs,14

which vary across developers and platforms. Specifically, each developer faces three

costs: ki ≥ 0 for developing its app on Pi, for i = 1, 2, and k for developing it on

both platforms. Each cost realization k = (k1, k2, k) is independently drawn across

developers from a distribution F̄ (k) over R3
+, which is symmetric in k1 and k2.

If each Pi charges a commission ai and provides access to a consumer base Di, then

offering the app on Pi at price p̃i gives the developer a payoff equal to

(1− ai) π(p̃i)Di − ki,

whereas the payoff from offering the app on both platforms is given by:

(1− a1) π(p̃1)D1 + (1− a2)π(p̃2)D2 − k.

• Platforms. For the sake of exposition, we set the cost of servicing consumers to zero.15

Hence, if each Pi charges a commission ai and a consumer price pi, and attracts yi

developers, each generating an expected profit πi and consumer surplus si, then Pi’s
profit is given by, for i 6= j ∈ {1, 2}:

Πi = (pi + aiπiyi)D (pi − siyi, pj − sjyj) . (1)

Without loss of generality, we focus on commissions not exceeding 1:16

ai ∈ A ≡ (−∞, 1] for i = 1, 2.

• Timing. The timing is as follows:

1. Competition for apps :

(a) the two platforms set their commissions, a1 and a2;

(b) developers learn their costs and make investment decisions.17

2. Competition for consumers :

14The analysis is robust to the introduction of variable costs, with the caveat that the commissions
then also affect consumers through the price of the apps. See Remark 1.

15Alternatively, the price pi can be interpreted as Pi’s margin on the consumer side – to allow for
this interpretation, we do not impose any restriction on the sign of pi.

16Any higher commission deters any app development and is thus equivalent to a commission of
1. Relatedly, any derivative with respect to ai must be understood as a left-hand derivative when
evaluated at the boundary ai = 1.

17Without loss of generality, developers join every platform for which they developed their apps.
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(a) the platforms set their prices, p1 and p2, and developers set app prices;18

(b) consumers make their participation decisions; upon joining a platform, they

learn their valuations for the available apps and decide which ones to buy.

At each stage, all decisions are simultaneous and public; hence, each stage deter-

mines a proper subgame. We will therefore focus on subgame-perfect equilibria.

As is well-known, multi-sided markets are subject to network effects and thus prone

to tipping; as a result, competition – even between equally efficient firms – may lead to

monopolization. We are instead interested here in the impact of competition on app

development. We will therefore ignore tipping and focus on shared-market, symmetric

equilibria.

3 A stylized approach

We first adopt a stylized approach and assume that, for any commissions set in stage

1a, there exists a well-behaved continuation equilibrium in the key next stages, namely,

the app development stage 1b and the platform pricing stage 2a.

Using backward induction, we first consider the last stages of the game. In stage

2b, consumers’ participation decisions generate the demand D (Pi, Pj). In stage 2a,

all developers charge the price pm – regardless of the commissions;19 each available

app thus generates an expected profit πm ≡ π(pm) per consumer, and each consumer

obtains an expected surplus sm ≡ s(pm) per app. For each Pi, choosing a price pi thus

amounts to choosing a quality-adjusted price Pi = pi − smyi and the resulting profit,

given by (1), can be expressed as:

Πi = Π (Pi, Pj;σi) ≡ (Pi + σi)D (Pi, Pj) ,

where

σi ≡ (sm + aiπ
m) yi.

It follows that, for any commissions (a1, a2) and app bases (y1, y2), the continuation

subgame amounts to a classic price competition game, in which each Pi chooses a

quality-adjusted price Pi and faces the demand D (Pi, Pj), with the caveat that it

benefits from a subsidy σi. In line with our stylized approach, we will suppose that,

for any given subsidies σ1 and σ2, this game has a unique price equilibrium, in which

18Whether a multihoming developer can charge platform-specific prices does not affect the analysis.
19Indeed, pm = arg maxp{(1− ai)π(p)Di} for any ai < 1 (and any Di > 0). In the boundary case

where ai = 1, developers obtain zero profit and are thus indifferent about their pricing decisions; for
the sake of exposition, we assume that they still charge pm.
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Pi’s price is given by

Pi = P e (σi, σj) .

Let

Πe (σi, σj) ≡ Π (P e (σi, σj) , P
e (σj, σi) ;σi) > 0 (2)

denote Pi’s equilibrium profit.20 Intuitively, an increase in σi should benefit Pi, but

also induce it to price more aggressively (i.e., charge a lower quality-adjusted price),

thus harming the rival. We will therefore maintain the following assumption:

Assumption 1 (competition for consumers) For any σ ∈ R and:

(a) ∂1P
e (σ, σ) < ∂2P

e (σ, σ) < 0;

(b) ∂1Πe (σ, σ) ≥ −∂2Πe (σ, σ) > 0.

Part (a) of Assumption 1 asserts that increasing one platform’s subsidy reduces

both quality-adjusted prices, and more so for the platform than for its rival. Part (b)

asserts that such an increase benefits the platform but harms its rival, although to a

lesser extent – it thus (weakly) enhances the platforms’ joint profit.21

• Competition for apps. In stage 1b, given the commissions (a1, a2) set in stage 1a,

developers base their investment decisions on expected consumer bases, which in turn

depend on app development, and thus on the two commissions. Sticking to our styl-

ized approach, we will assume that the distribution F̄ (k) generates a unique, stable

continuation equilibrium,22 in which Pi’s app base is given by

y∗ (ai, aj) ,

which satisfies

y∗ (0, 0) > y∗ (1, 1) = 0.

The resulting subsidy for Pi is then given by

σ∗ (ai, aj) ≡ (sm + aiπ
m) y∗ (ai, aj) , (3)

and therefore satisfies:

∂2σ
∗ (ai, aj) = (sm + aiπ

m) ∂2y
∗ (ai, aj) . (4)

20That this profit is positive follows from D(·) > 0. If we allow for D(·) = 0, the assumption
Πe (σi, σj) > 0 only needs to hold for non-negative subsidies.

21These assumptions are satisfied by common models of Bertrand competition featuring strategic
complementarity, equilibrium stability and partial pass-through.

22Stability refers here to the usual robustness to small shocks in app bases – see proof of Lemma 3.
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Hence, as long as sm + aiπ
m > 0,23 ∂2σ

∗ has the same sign as ∂2y
∗: raising its rival’s

commission reduces Pi’s subsidy if and only if it reduces Pi’s app base.

Summing up, our stylized approach postulates the existence of a price function

P e (σ1, σ2) (with associated profit Πe (σ1, σ2) given by (2)) satisfying Assumption 1

and of an app base function y∗ (ai, aj), such that, for any given commissions (a1, a2),

there is a unique, stable continuation equilibrium, in which:

• in stage 1b, Pi’s app base is yi = y∗ (ai, aj), generating the subsidy σi = σ∗ (ai, aj)

given by (3);

• in stage 2a, Pi charges a quality-adjusted price

Pi = P ∗ (ai, aj) ≡ P e (σ∗ (ai, aj) , σ
∗ (aj, ai)) ; (5)

• in stage 2b, Pi’s consumer base is

Di = D∗ (ai, aj) ≡ D (P ∗ (ai, aj) , P
∗ (aj, ai)) , (6)

and its profit is therefore

Πi = Π∗ (ai, aj) ≡ Πe (σ∗ (ai, aj) , σ
∗ (aj, ai)) . (7)

3.1 Benchmarks

We first characterize the optimal commission a that a regulator would impose in stage

1a,24 given the continuation equilibria described above. We will denote by

ŷ (a) ≡ y∗ (a, a) and σ̂ (a) ≡ σ∗ (a, a) = (sm + aπm) ŷ (a)

the resulting app base and subsidy, and by

P̂ (a) ≡ P e (σ̂ (a) , σ̂ (a)) and D̂ (a) ≡ D(P̂ (a) , P̂ (a))

the resulting quality-adjusted price and demand.

We distinguish two cases, depending on whether the regulator focuses on consumer

surplus or social welfare.

23This is indeed the case for the commissions that maximize consumer surplus – see Corollary 1.
24For the sake of exposition, we focus on symmetric commissions, which is natural given the sym-

metry of the setting; moreover, the regulator may be constrained by non-discrimination provisions.
The uniqueness of the continuation equilibria (for every a ∈ A) implies that they are also symmetric.
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3.1.1 Consumer surplus

Suppose first that the regulator seeks to maximize consumer surplus, given by:25

Ŝ (a) ≡
∫ +∞

P̂ (a)

2D (P, P ) dP. (8)

This amounts to minimizing the quality-adjusted price P̂ (a). From Assumption 1(a),

this in turn amounts to maximizing the subsidy σ̂ (a). Furthermore, from Assumption

1(b), doing so also maximizes the joint profit of the platforms, given by

Π̂P (a) ≡ 2Πe (σ̂ (a) , σ̂ (a)) . (9)

The interests of platforms and consumers are therefore aligned :

Lemma 1 (consumer surplus) Maximizing consumer surplus, Ŝ (a), or platforms’

profit, Π̂P (a), amounts to maximizing platforms’ subsidy, σ̂ (a). It follows that the

commission that maximizes consumer surplus, aS, satisfies ŷ
(
aS
)
> 0 > ŷ′

(
aS
)

and:

sm + aSπm =
πmŷ

(
aS
)

−ŷ′ (aS)
> 0. (10)

Proof. See Appendix A.1.

For ease of exposition, we will assume that aS is uniquely characterized by (10).26

3.1.2 Social welfare

Suppose now that the regulator seeks to maximize social welfare, defined as the sum

of all users’ surplus and the platforms’ profit:

Ŵ (a) ≡ Ŝ (a) + Π̂D (a) + Π̂P (a) . (11)

The first and last terms (consumer surplus and platforms’ profit) are given by (8) and

(9). The second term, representing developers’ profit, can be expressed as:

Π̂D (a) ≡
∫
R3
+

πD (r̂ (a) ,k) dF̄ (k) , (12)

where

r̂ (a) ≡ (1− a) πmD̂ (a)

25For P1 = P2 = P , total demand is 2D (P, P ) = 1 − H(P ), where H (ũ) denotes the dis-
tribution of the maximal intrinsic value ũ ≡ max {u1, u2}, and consumer surplus is given by

S̃ (P ) =
∫ +∞
P

(ũ− P ) dH (ũ), which satisfies S̃′(P ) = −[1−H(P )] = −2D(P, P ).
26In case of multiple solutions, Lemma 2 holds for any of them, including the lowest one.
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denotes the revenue that a developer can obtain by joining a platform, and

πD (r,k) ≡ max {0, r − k1, r − k2, 2r − k}

denotes the equilibrium profit of a developer with cost realization k = (k1, k2, k3).

As noted above, the commission aS, which maximizes the subsidy σ̂ (a), maximizes

Ŝ (a) and Π̂P (a) as well. Developers favor instead lower commissions, implying that

the welfare-maximizing commission lies below aS:27

Lemma 2 (social welfare) The commission that maximizes social welfare, aW , is

such that aW < aS, ŷ(aW ) > ŷ(aS)(> 0), and:

sm + aWπm =
P̂
(
aW
)

+ (sm + πm)ŷ(aW )

−ŷ′ (aW )

D̂′
(
aW
)

D̂ (aW )
≥ 0. (13)

Proof. See Appendix A.2.

It follows from (13) that subsidies are socially desirable (all the more when focusing

on consumers):

Corollary 1 (non-negative subsidies) We have: σ̂(aS) > σ̂(aW ) ≥ 0; further-

more, σ̂(aW ) > 0 unless D̂′
(
aW
)

= 0, in which case σ̂(aW ) = sm + aWπm = 0.

Proof. See Appendix A.3.

3.2 Platform competition

We now show that platform competition can generate excessively high commissions.

To this end, we complete our stylized approach by assuming that, in stage 1a, the

commission-setting game – with payoffs Π∗ (ai, aj) given by (7) – is “well-behaved”:

Assumption 2 (competition for developers) For any a ∈ A:

(a) Π∗ (ã, a) is strictly quasi-concave in ã in the range ã ∈ A;

(b) R(a) ≡ arg maxã Π∗ (ã, a) is differentiable and has a unique fixed point, aC, which

satisfies
∣∣R′ (aC)∣∣ < 1.

27The commissions affect developers’ revenue, r̂(a) = (1− a)πmD̂(a), both directly and indirectly
through consumer participation D̂(a). However, a slight departure from aS has only a second-order
indirect effect on subsidies and consumer participation, which is thus dominated by the direct effect.
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Part (a) ensures that the platforms have a unique best-response, R (·); part (b)

ensures in turn that there exists a unique, locally stable equilibrium, in which a1 =

a2 = aC .

Our first proposition shows that the comparison between this equilibrium commis-

sion and what would maximize consumer surplus hinges on a simple condition:

Proposition 1 (platform competition) Platform competition yields higher (resp.,

lower) commissions than those maximizing consumer surplus whenever raising one

commission reduces (resp., increases) the rival’s app base. Formally:

aC T aS if and only if ∂2y
∗ (aS, aS) S 0.

Proof. See Appendix A.4.

The key is therefore whether the platforms are complements or substitutes for

the development of apps. In case of complements, that is, if raising one commission

reduces the rival’s app base, competition generates higher commissions than what

would maximize consumer surplus – and welfare, as aS > aW . This is because a

platform has an incentive to reduce the rival’s subsidy to make the latter less aggressive.

In case of substitutes, that is, if raising one commission fosters app development on

the rival platform, competition generates lower commissions than those maximizing

consumer surplus – they may however still exceed those maximizing social welfare.

Remark 1 (pass-through) The analysis carries over when introducing variable costs

for the apps, with the caveat that the commissions then affect app prices. For example,

a unit cost c > 0 per user induces developers present on Pi to charge

pi = pm(ai) ≡ arg max
p
{(1− ai)(p−

c

1− ai
)d(p)},

which increases with ai. Hence, ai additionally affects Pi’s subsidy σi through its impact

on consumer surplus, s(pm(ai)), and on the profit generated by the apps, π(pm(ai)),

which are now both decreasing in ai. Yet, ai affects Pj’s subsidy σj only through the

latter’s app base, as before; Proposition 1 thus remains valid – maximizing platforms’

subsidy (and, thus, consumer surplus and platforms’ profit) may however call for lower

commissions, to avoid depressing the surplus and profit generated by the apps.

3.3 Cost externalities

The above analysis highlights a key factor, namely, the impact of a commission on the

rival platform’s app base. We now show that this, in turn, depends on the existence
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of (dis-)economies of scope in app development.

3.3.1 Preliminaries

In stage 1, Pi’s app base can be expressed as y∗ (ai, aj) = Y (r∗ (ai, aj) , r
∗ (aj, ai)), for

i 6= j ∈ {1, 2}, where

r∗ (ai, aj) ≡ (1− ai) πmD∗ (ai, aj) (14)

denote the revenue expected from joining Pi, and

Y (ri, rj) ≡ Pr [max {ri − ki, ri + rj − k} ≥ max {rj − kj, 0}] (15)

characterizes developers’ decisions to invest on Pi, given (the distribution of investment

costs and) the revenues offered by the two platforms. The impact of a marginal increase

in the rival’s commission, aj, can in turn be expressed as:

∂2y
∗ (ai, aj) = ∂1Y (r∗ (ai, aj) , r

∗ (aj, ai)) ∂2r
∗ (ai, aj)+∂2Y (r∗ (ai, aj) , r

∗ (aj, ai)) ∂1r
∗ (aj, ai) .

Using (14) and evaluating at ai = aj = aS yields:

∂2y
∗ (aS, aS) = DS + IS,

where, using DS ≡ D∗
(
aS, aS

)
and rS ≡ r∗

(
aS, aS

)
,

DS ≡ −πmDS∂2Y
(
rS, rS

)
captures the impact of a change in the rival’s commission, daj, through its direct effect

on the revenue offered by the rival (i.e., drj = −πmDSdaj), whereas

IS ≡
(
1− aS

)
πm
[
∂2D

∗ (aS, aS) ∂1Y
(
rS, rS

)
+ ∂1D

∗ (aS, aS) ∂2Y
(
rS, rS

)]
reflects instead the impact of this change through its indirect effects on the revenues

offered by the two platforms, as a result of the alterations of their consumer bases (i.e.,

drh = (1− ah)πmdDh, for h = i, j).

Let P S ≡ P ∗
(
aS, aS

)
, σS ≡ σ∗

(
aS, aS

)
, and

AS ≡ [∂1Y (·)− ∂2Y (·)] [∂1D (·)− ∂2D (·)] [∂1P
e (·)− ∂2P

e (·)]
(
1− aS

)
πm
(
sm + aSπm

)
,

(16)

where, for h = 1, 2, ∂hY (·) is evaluated at r1 = r2 = rS, ∂hD (·) is evaluated at

P1 = P2 = P S, and ∂hP
e (·) is evaluated at σ1 = σ2 = σS. We have:
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Lemma 3 (direct effect) AS < 1 and

∂2y
∗ (aS, aS) =

DS

1− AS
. (17)

Proof. See Appendix A.5.

The intuition is that the direct effect (DS) drives the indirect ones (IS). Specif-

ically, DS generates the initial impact on the rival’s app base in stage 1, keeping

consumer bases unchanged in stage 2. However, this initial impact alters platforms’

subsidies and, therefore, their consumer prices and resulting consumer bases. The

alteration of consumer bases triggers a first additional impact on the rival’s app base,

summarized by the factor AS. This, in turn, generates a second iteration of indirect

effects, and so on.28

Together with Proposition 1, Lemma 3 shows that whether competitive commis-

sions lie above or below the level maximizing consumer surplus is driven by the sign

of the direct effect, DS. The proof of the lemma rests on two legs. The first leg relies

on the observation that consumer prices – and, thus, consumer bases – are driven by

platforms’ subsidies, which in turn are driven by their app bases. The second leg relies

on the assumed stability of continuation equilibria, implying that it is robust to small

changes in app bases.

3.3.2 Independent development

Following Armstrong (2006), the literature on competitive bottlenecks has mainly fo-

cused on the case of simultaneous participation decisions (i.e., both sides of the market

decide at the same time) and independent participation decisions on the multihoming

side (i.e., joining one platform has no incidence on the decision to join the other

platform). To study how the insights from this literature apply to our setting with

sequential participation decisions (developers deciding which platform to join, if any,

before consumers’ participation decisions), we consider here the particular case where

k1 and k2 are symmetrically and independently distributed across developers, with

marginal c.d.f. F (·), and:

k = k1 + k2.

This assumption eliminates any cross-platform externality between an individual de-

veloper’s investment decisions. Specifically, developing the app for one platform does

not affect the cost of developing it for the other platform; furthermore, individual apps

being infinitesimal, this has no incidence either on consumers’ subsequent participa-

tion decisions and, therefore, on the revenue offered by the other platform. Hence, as

28That is, we have IS = ASDS + (AS)2DS + . . ., which leads to (17).
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in Armstrong (2006), developers’ participation decisions are made independently for

each platform. In particular, Y (·) boils down to, for i 6= j ∈ {1, 2}:

Y (ri, rj) = F (ri) ,

implying DS =
(
−πmDS∂2Y (ri, rj)

)
= 0. Hence, we have:

Proposition 2 (independent development) In case of independent development

decisions, platform competition yields the commissions that maximize consumer sur-

plus: aC = aS.

Proof. It follows directly from Proposition 1, Lemma 3 and DS = 0.

The underlying intuition is as follows. With independent development decisions,

the revenue offered by a platform has no direct impact on its rival’s app base (i.e.,

DS = 0). This, in turn, implies that small deviations from the equilibrium commissions

do not alter the consumer bases. To see why, suppose tentatively that, starting from

ai = aj = aC , a unilateral deviation in aj has no indirect impact either on Pi’s app

base, which thus remains equal to yC ≡ y∗
(
aC , aC

)
. It follows that the deviation has

no impact on Pi’s subsidy; that is:

σi = σ∗
(
aC , aj

)
=
(
sm + aCπm

)
yC = σC .

Pj’s profit from the deviation is therefore equal to Π (σj, σi) = Π
(
σ∗
(
aj, a

C
)
, σC

)
;

this, in turn, implies that Pj’s equilibrium commission maximizes its own subsidy,

σj = σ∗
(
aj, a

C
)
; the deviation thus has no (first-order effect) on that subsidy. In

other words, following the deviation, both subsidies remain equal to σC , which validates

our working assumption: in stage 2, both consumer bases remain unaffected. Hence,

there are indeed no indirect effects, and so ∂2y
∗ (aC , aC) = 0. It then follows from

Proposition 1 that aC = aS.

It follows from these observations that, with independent development decisions, aS

and aC both coincide with aσ, the commission maximizing the platform’s own subsidy

(assuming that the rival platform charges that commission); that is, aσ is characterized

by the following condition:

aσ = arg max
a
σ∗ (a, aσ) ,

or:

∂1σ
∗ (aσ, aσ) = 0. (18)
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Corollary 2 (independent development) In case of independent development de-

cisions, in equilibrium each platform seeks to maximize its own subsidy: aC =
(
aS =

)
aσ.

Proof. See Appendix A.6.

Remark 2 (competitive bottlenecks) Proposition 2 extends the result of Arm-

strong (2006), established for environments in which (participation decisions are in-

dependent, and) platforms compete simultaneously on both sides of the market, to

environments in which platforms compete on the multihoming side (here, the app side)

before competing on the single-homing side (here, the consumer side). There is a

twist, however. In Armstrong (2006), the equilibrium fee charged by a platform on

the multihoming side maximizes the joint surplus of the platform and of its users on

the single-homing side. Here, in case of independent development decisions, the equi-

librium commissions maximize both total consumer surplus and the platforms’ joint

profits (and not only their sum).29

Our insights carry over when platforms compete in wholesale prices for apps, but no

longer do so when they compete in fixed fees (see Online appendix O-A). The reason is

that, in our sequential competition setting, wholesale prices, like ad valorem commis-

sions, affect platforms’ profits only through the subsidies enjoyed when interacting with

consumers; the interests of consumers and platforms are therefore aligned, as both seek

to maximize these subsidies. In contrast, fixed fees have a direct impact on platforms’

profits, other than through the subsidies. As a result, the interests of consumers and

platforms diverge.

3.3.3 Economies of scope

We now show that the above insight does not carry over when developers face (dis-

)economies of scope. Specifically, suppose that development costs are distributed as

follows: k1 and k2 are symmetrically and independently distributed across developers,

with marginal c.d.f. F (·), and

k = κ (k1, k2; s) ,

where s ∈ R is a parameter reflecting (dis-)economies of scope and κ (·) has the

following properties:

29The underlying arguments are also somewhat different. In Armstrong (2006), starting from any
given fees, a platform deviating on the multihoming side can capture the resulting change of surplus
on the other side (by adjusting its fee on that other side). Here, deviating on the app side in stage
1 triggers instead a change in consumer surplus on both platforms in stage 2 (the “indirect effects”
described above); however, starting from the equilibrium commissions, these indirect effects are only
second-order.

18



Assumption S (economies of scope). κ (k1, k2; s) is symmetric in k1 and k2, such

that κ (k1, k2; 0) = k1 + k2, and strictly decreasing in s for any (k1, k2) > (0, 0).

The boundary case s = 0 corresponds to independent development decisions (i.e.,

k = k1 +k2). By contrast, developers benefit from economies of scope (i.e., k < k1 +k2)

if s > 0, and face diseconomies of scope (i.e., k > k1 + k2) if instead s < 0. Illustrative

examples include κ (k1, k2; s) = exp (−s) (k1 + k2), κ (k1, k2; s) = k1 + k2 − s and

κ (k1, k2; s) = k1 + k2 − sk1k2.

The following proposition shows that platform competition yields higher (resp.,

lower) commissions than those maximizing consumer surplus whenever there are economies

(resp., diseconomies) of scope:

Proposition 3 (economies of scope) Under Assumption S:

aC ≷ aS if and only if s ≷ 0.

Proof. See Appendix A.7.

In the light of Proposition 1 and Lemma 3, it suffices to show that the direct effect

DS = −πmDS∂2Y
(
rS, rS

)
is negative (resp., positive) when developers benefit from

economies of scope (resp., face diseconomies of scope), that is:

∂2Y
(
rS, rS

)
≷ 0⇐⇒ s ≷ 0.

To study this, let us examine the effect of an increase in rj on developers who are

at the margin between developing or not their apps for Pi. Those facing a very high

kj must be indifferent between developing for Pi only and not developing at all, and

those facing a very low kj must be indifferent between developing for both platforms

and developing only for Pj. The decisions of these developers do not depend on rj: in

the former case, rj does not affect any of the two relevant options and, in the latter

case, it affects both options in the same way.

Developers facing intermediate values of kj are either indifferent between developing

for both platforms or for none of them, or indifferent between developing for P1 only or

for P2 only. The former case occurs when r1+r2−k = 0 > max {r1 − k1, r2 − k2}; it can

therefore arise only when there are economies of scope. Furthermore, raising rj then

increases Pi’s app base: ∂2Y (ri, rj) > 0. The latter case occurs instead when r1−k1 =

r2 − k2 > max {r1 + r2 − k, 0}, and thus arises only when there are diseconomies of

scope; furthermore, raising rj then decreases Pi’s app base: ∂2Y (ri, rj) < 0.

Economies of scope arise whenever the cost of porting an app to another platform

is lower than the initial cost of development, which we expect to be often the case in
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practice.30 Conversely, whenever there are economies of scope, combining Lemma 2

and Proposition 3 yields:

Corollary 3 When there are economies of scope, we have:

aC > aS > aW .

Although we have focused on development costs, a similar logic can be applied to

operational costs or demand synergies (e.g., if multihoming is required to reach a viable

scale or generate demand). The recent complaint of the U.S. Department of Justice

against Apple provides several examples. For instance, providers of food delivery or

ride-sharing services need to develop their apps for both Android phones and iPhones

to reach a viable scale.31 Likewise, social or money-sharing apps must enable users

on Android devices to interact with users on iPhones and vice versa.32 In some cases,

the restrictions imposed by Apple on certain features (besides the commission) has

prompted additional concerns for the development of intrinsically-multihoming apps.

For example, according to the U.S. Department of Justice, some U.S. banks have

abandoned the development of digital-wallet apps. Another company decided not to

offer an innovative digital car key because Apple required it to add its features into

Apple Wallet rather than solely in its own app.33

4 Illustration

We now illustrate the above insights using a classic horizontal differentiation setting

on the consumer side, and two distinct types of developers on the app side.

• Consumers. The two platforms are located at the two ends of a unit-length Hotelling

segment, along which consumers are uniformly distributed. Upon joining a platform,

a consumer obtains an intrinsic utility u0 > 0 and faces a transportation cost t > 0

per unit of distance. As in Armstrong (1998) and Laffont, Rey and Tirole (1998a,b),

u0 is supposed to be large enough to ensure that all consumers join a platform (full

participation). Consumers know their locations before joining a platform and, from

the above, anticipate an expected surplus sm from each app present on the platform.

Hence, if Pi charges consumers a price pi and attracts yi apps, joining that platform

30This is particularly true for cloud-gaming apps, as the game is played on cloud servers and, thus,
need not be compatible with different mobile OSs.

31U.S. DOJ (2024), at §160.
32U.S. DOJ (2024), at §161.
33U.S. DOJ (2024), at §132.
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gives a consumer located at distance xi a net payoff equal to:

u0 + smyi − pi − tx.

The consumer indifferent between the two platforms is located at a distance x from

Pi (and, thus a distance 1− x from Pj, for i 6= j ∈ {1, 2}) equal to:

1

2
+
sm(yi − yj)− (pi − pj)

2t
.

Using the quality-adjusted price Pi = pi − smyi, the demand for Pi is therefore:

D (Pi, Pj) =
1

2
− Pi − Pj

2t
.

As before, Pi’s profit is equal to Πi = (Pi + σi)D (Pi, Pj), where σi = (sm + aiπ
m) yi.

In stage 2, the platforms compete à la Hotelling, which leads to:

Lemma 4 (Hotelling competition) In stage 2, for any given (σ1, σ2), competition

for consumers leads to P e (σi, σj) = PH (σi, σj) and Πe (σi, σj) = ΠH (σi, σj), where

PH (σi, σj) ≡ t− 2σi + σj
3

and ΠH (σi, σj) ≡
1

2t

(
t+

σi − σj
3

)2

.

Proof. See Appendix B.1.

It can be seen from Lemma 4 that Assumption 1 is satisfied.34

• Developers. Some apps are made available on multiple platforms whereas others are

developed only for a specific platform. To capture this in a simple way, we distinguish

two types of app developers: a fraction α ∈ [0, 1] of them are intrinsic multihomers

in that they develop their apps on either both platforms or none, whereas the others

make independent development decisions for each platform – as will become clear,

whether the same or different developers make those decisions is immaterial for the

analysis; see Remark 3 below.

Specifically, the latter type of developers (independent decision makers hereafter)

face platform-specific costs k1 and k2, symmetrically and independently distributed

across developers, with marginal c.d.f. FI(·) and density fI(·) > 0 over [0,∞); hence,

as in Section 3.3.2, developing the app on one platform has no incidence on the devel-

opment decision for the other platform.35 The former type of developers (joint decision

34Specifically, ∂1P
e(·) = 2∂2P

e(·) = −2/3 and ∂1Πe(σ, σ) = −∂2Πe(σ, σ) = 1/3.
35The case α = 0, in which all developers make independent decisions, corresponds to the setting

of Etro (2023) (in which investment costs are moreover independently distributed across platforms).
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makers hereafter) can instead make their apps available on both platforms at cost k,

drawn from a distribution with c.d.f. FJ(·) and density fJ(·) > 0 over [0,∞).36 It

is worth noting that we are agnostic about the relative strength of the distributions

FI(·) and FJ(·); by contrast, the proportion α of joint decision makers will play an

important role.

Remark 3 (interpretation) This cost distribution is a particular case of the dis-

tribution F̄ (k) introduced in Section 2, in which joint decision makers benefit from

substantial economies of scope (i.e., k � k1 + k2), whereas independent decision mak-

ers have no such benefits (i.e., k = k1 + k2). Alternatively, an independent decision

maker can be interpreted as a pair of specialized developers, each dedicated to a distinct

platform (with ki � k, kj for those dedicated to Pi). The case α = 1 can also reflect

a situation in which the operating systems of the two platforms are fully interoperable

(e.g., due to regulation or thanks to third-party facilitating tools), so that the cost of

porting an app from one platform to the other is zero (hence, k = min{k1, k2}).

To ensure the existence of a well-behaved equilibrium under competition, we will

maintain the following assumption:

Assumption 3 (illustration) The density functions are non-increasing:

f ′I(·) ≤ 0 and f ′J(·) ≤ 0.

4.1 Benchmarks

If both platforms charge the same commission a,37 in the symmetric continuation

equilibrium a developer can obtain (1− a) πm when multihoming, and half of it when

single-homing; hence, there are

ŷ (a) = (1− α)ŷI(a) + αŷJ(a) (19)

apps available on each platform, where ŷI(a) and ŷJ(a) are the proportions of active

developers in the two groups, and are given by:

36One interpretation is that these developers can costlessly port their apps from one platform to
the other. Introducing a small cost of porting these apps would not qualitatively affect the analysis.

37When commissions are symmetric, there always exists a unique symmetric equilibrium, in which
developers expect each platform to attract half of the consumers and, as a result, the proportions
of active developers are given by (20) and (21). This moreover constitutes the unique continuation
equilibrium if t is large enough. For the sake of exposition, we focus on this continuation equilibrium.
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ŷI(a) ≡ FI

(
1− a

2
πm
)
, (20)

ŷJ(a) ≡ FJ ((1− a)πm) . (21)

By construction, the relative importance of the two groups, measured by α, affects

the total number of apps available on a platform; by contrast, it has no direct impact

on ŷI(a) nor ŷJ(a) – as we will see, it has an indirect impact through the level of the

commissions. The resulting subsidy is

σ̂ (a) ≡ (sm + aπm) ŷ (a) , (22)

leading to the (quality-adjusted) price and profit:

P̂ (a) ≡ PH (σ̂ (a) , σ̂ (a)) = t− σ̂ (a)

and

Π̂ ≡ ΠH (σ̂ (a) , σ̂ (a)) =
t

2
.

Competition thus induces the platforms to pass on their subsidy entirely to consumers;

as a result, their profits do not depend on the commission.

As total consumer demand is inelastic (namely, 2D̂ (a) = 1), it follows from Lemma

2 that the welfare-maximizing commission aW nullifies the subsidy: sm + aWπm = 0,

implying σ̂(aW ) = 0; that is, regardless of the proportion α of joint decision makers

and of the differentiation parameter t, the social planner subsidizes the developers so

as to align their profit per consumer, (1− aW )πm, with the total surplus generated by

their apps, sm + πm.

By contrast, the commission that maximizes consumer surplus, aS, always gener-

ates a positive subsidy, as noted by Corollary 1. Furthermore, from Lemma 4, for

symmetric commissions, the platforms’ equilibrium consumer bases are equal to one-

half, regardless of t. Hence, the revenue they offer to developers and, therefore, the

resulting app bases and subsidies, are all independent of t. It follows that aS, which

from Lemma 1 seeks to maximizes platforms’ subsidies, is also independent of t.

Building on this leads to:

Lemma 5 (illustration - benchmarks)

(i) aW and aS satisfy:

aW = − s
m

πm
< aS (α) < 1 and σ̂

(
aW
)

= 0 < σ̂
(
aS (α)

)
.
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(ii) Neither aW nor aS depends on t.

Proof. See Appendix B.2.

Example 1 (uniform distribution) When development costs are uniformly distributed

over [0, 1] (i.e., FI(k) = FJ(k) = k), aS is also independent of α and equal to:

aS =
πm − sm

2πm
(∈ (aW ,

1

2
)). (23)

In particular, aS ≶ 0 if and only if sm ≷ πm.

Remark 4 (monopoly profit) We already noted that the commission aS maximizes

the profit of the platforms when they compete for consumers. Interestingly, in the

Hotelling setting, a = aS also maximizes the monopoly profit that an integrated firm,

operating both platforms, could obtain when exploiting consumers. This is because total

demand, being here inelastic, is therefore the same under competition and monopoly (as

long as full participation remains optimal). It follows that the app bases generated by

a commission a are also the same in both situations. As a monopolist can appropriate

the consumer value generated by the apps, it then finds it optimal to maximize σ̂ (a).38

4.2 Platform competition

We now show that platform competition leads indeed to excessively high commissions.

As in Section 3, for any given commissions (a1, a2) set in stage 1a, let y∗(ai, aj) denote

Pi’s app base in the continuation equilibrium, and σ∗(ai, aj) denote its subsidy, given

by (3). Building on Lemma 4, Pi’s expected demand satisfies

D∗ (ai, aj) =
1

2
+

∆∗ (ai, aj)

6t
, (24)

where ∆∗ (ai, aj) ≡ σ∗ (ai, aj) − σ∗ (aj, ai) denotes Pi’s subsidy advantage, and the

revenue from joining Pi is given by:

r∗ (ai, aj) = (1− ai) πmD∗ (ai, aj) . (25)

38Given the unit demand and the absence of operating costs, the monopoly profit, which corresponds
to the sum of the monopoly price on the consumer side and the platforms’ revenue from apps, is equal
to u0 − t/2 + σ̂ (a), and is thus maximal for aS .
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Furthermore, Pi’s app base is y∗ (ai, aj) = (1− α)y∗I (ai, aj) + αy∗J (ai, aj), where:

y∗I (ai, aj) ≡ FI (r∗ (ai, aj)) , (26)

y∗J (a1, a2) ≡ FJ (r∗ (a1, a2) + r∗ (a2, a1)) . (27)

Finally, the subsidy advantage can be expressed as

∆∗ (ai, aj) = sm [y∗I (ai, aj)− y∗I (aj, ai)] + πm [aiy
∗ (ai, aj)− ajy∗ (aj, ai)] (28)

Together, equations (24) to (28) jointly characterize the continuation equilibrium. Fur-

thermore, from Lemma 4, in equilibrium each platform seeks to maximize its subsidy

advantage, given by (28).

The following proposition establishes the existence of a unique equilibrium and

highlights its key features:

Proposition 4 (illustration) For t large enough, there exists a unique equilibrium,

which is symmetric. Furthermore, whenever a symmetric equilibrium exists, it is

unique and the resulting commission, aC:

(i) does not depend on t.

(ii) is strictly increasing in α and:

– coincides with aS for α = 0;

– strictly exceeds aS for α > 0;

– is equal to 1 (thus choking off the development of apps) for α = 1.

Proof. See Appendix B.3.

When all development decisions are taken independently for each platform (i.e.,

for α = 0), as in Etro (2023) and Section 3.3.2, competition induces the platforms to

adopt the commissions that maximize consumer surplus. This no longer holds in the

presence of joint decision makers who, as in Section 3.3.3, benefit from economies of

scope. The rival’s subsidy is then

σj = (sm + ajπ
m) [(1− α)y∗I (aj, ai) + αy∗J (aj, ai)] ,

where the number of apps stemming from joint decision making, y∗J (aj, ai), is now

directly affected by Pi’s own commission. Each platform then has an additional incen-

tive to raise its commission, as reducing the number of these apps decreases its rival’s

subsidy – all the more so when α is large.
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In particular, when all developing decisions are jointly made (i.e., α = 1), platforms’

incentives lead them to choke off entirely the development of apps: aC (1) = 1, leading

to y1 = y2 = 0 – indeed, in that case, there cannot be any symmetric or asymmetric

equilibrium without choke-off.39 Interestingly, there is no longer a complete choke-off

when platforms compete in wholesale prices rather than ad valorem commissions; this

is because wholesale prices generate double-marginalization problems, which in turn

act as a disciplining device.40

Recall that the commission that maximizes consumer surplus is always higher than

the welfare-maximizing level; thus, for α = 0 we have:

aC = aS > aW ,

and for any α > 0, we have:

aC > aS > aW .

The following example illustrates these insights.

Example: uniform distribution. When development costs are uniformly distributed

over [0, 1] (i.e., FI(k) = FJ(k) = k), the equilibrium commission is equal to:

aC(α) ≡ aS + α
πm + sm

2πm
,

which strictly increases from aS to 1 as α increases from 0 to 1. It follows that each

platform’s app base, given by

ŷ(aC(α)) =
1− α2

4
(πm + sm),

strictly decreases to 0 as α increases. By contrast, as aS is independent of α (see (23)),

the app base maximizing consumer surplus, ŷ(aS), increases with α. Figure 1 presents

the values of interest, for the commission and the resulting app base.

39To see this, it suffices to note that Pi’s subsidy advantage becomes ∆∗ (ai, aj) =
(ai − aj) y∗J (a1, a2)πm. It follows that, starting from ai < aj , say, Pi would have an incentive to
match its rival’s commission; and starting from a1 = a2 = a, both platforms would have an incentive to
raise their commissions as long as their remains some app development, as ∂1∆∗ (a, a) = y∗J (a, a)πm.

40Llobet and Padilla (2016) consider a setting in which upstream firms license their patents to
a downstream firm. They compare ad valorem royalties with per-unit royalties and show that the
former bring two welfare benefits. First, ad valorem royalties make double marginalization less severe,
not only between the downstream firm and its partners but also among upstream firms (the so-called
royalty stacking problem), which leads to lower prices. This, in turn, gives all firms greater incentives
to invest in complementary technologies. In our paper, ad valorem commissions actually eliminate
double marginalization entirely, because applications are digital goods with zero marginal costs.
Interestingly, it is exactly this absence of double marginalization which harms consumers by choking
off app development, thereby overturning the welfare comparison between ad valorem commissions
and per-unit royalties.
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Figure 1: Commission and app bases for uniform distributions: FI(k) = FJ(k) = k
and πm = 2sm.

The finding that a higher fraction of joint decision makers, who benefit from

economies of scope, raises the complementarity between the two platforms and in-

duces them to charge higher commissions, is consistent with the following claim of the

U.S. Department of Justice:

“...the vast majority of developers consider iPhones and Android devices as com-

plements because developers must build apps that run on both platforms due to the

lack of user multi-homing. ... This market reality increases the power that Apple is

able to exercise over developers that seek to reach users on smartphones.”41

Remark 5 (interoperability) As alreadny noted, the case α = 1 can be interpreted

as the platforms’ operating systems being fully interoperable. For exogenously given

commissions, moving from no or partial interoperability to full interoperability gener-

ates economies of scope and thereby boosts app development. In contrast, our analysis

shows that when commissions are endogenous, full interoperability can hinder and even

choke off app development.

5 Extensions

In this section, we first provide an extension of the Hotelling model in which n ≥ 2

platforms compete. We show that an increase in the number of platforms amplifies

the importance of platform complementarity for the app development, which in turn

widens the gap between the equilibrium commission and the consumer-surplus maxi-

mizing one. We also examine a variant of the Hotelling model that incorporates the

uncertainty of app success and the sequential nature of the development and porting

41U.S. Department of Justice (2024), at § 181.
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decisions. We provide a condition under which app development exhibits platform

complementarity.

5.1 Multiple platforms

We here extend the Hotelling model to the spokes model (Caminal and Claici, 2007,

Chen and Riordan, 2007),42 with n ≥ 2 symmetric spokes and n symmetric platforms.

The main objective of this extension is to examine how the number of platforms affects

the gap between the equilibrium commission and the consumer-surplus maximizing

one.

All spokes are identical: they have an origin (x = 0), a length normalized to 1/2,

and they all join at the centre of the market (x = 1/2). Each Pi is located at the

origin of spoke i, and a unit mass of consumers is uniformly distributed over the n

spokes. A consumer located on spoke i is only interested in Pi and another, randomly

selected platform – every other platform being selected with equal probability. As

before, a consumer incurs a disutility proportional to the distance between her and

the platform; we let t > 0 denote the transportation parameter. Finally, the intrinsic

value from buying a device, u0, is supposed to be high enough to ensure that the

market is covered. For n = 2, this is the Hotelling model of Section 4.

For i = 1, ..., n, let Pi = pi − smyi and σi = (sm + aiπ
m) yi denote as before Pi’s

quality-adjusted price and subsidy, and

P̄i ≡
1

n− 1

∑
j 6=i

Pj and σ̄i ≡
1

n− 1

∑
j 6=i

σj

denote the average price and subsidy of its rivals; the demand for Pi and its profit are

now given by (with the superscript S referring to the Spokes model):

D̄S
n

(
Pi, P̄i

)
≡ 1

n
− Pi − P̄i

nt
and Π̄S

n

(
Pi, P̄i;σi

)
≡ (Pi + σi) D̄

S
n

(
Pi, P̄i

)
.

In stage 2, platform competition leads here to:

Lemma 6 (Spokes competition) In stage 2, for any given subsidies (σ1, · · · , σn),

competition for consumers leads to Pi = P S
n (σi, σ̄i), Di = DS

n (∆i) and Πi = ΠS
n (∆i) ≡

nt
[
DS
n (∆i)

]2
, where ∆i = σi − σ̄i denotes Pi’s subsidy advantage and:

P S
n (σi, σ̄i) ≡ t− nσi + (n− 1) σ̄i

2n− 1
, and DS

n (∆i) ≡
1

n
+

n− 1

2n− 1

∆i

nt
. (29)

Proof. See Online Appendix O-B.1.1.

42For a recent overview of the properties of this model, see Reggiani (2020).
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Lemma 6 extends Lemma 4 to more than 2 platforms. A platform’s profit depends

again on its subsidy advantage, compared to the average subsidy of its rivals.

On the app side, we maintain the assumption that a fraction α of developers are

joint decision makers, who can develop their apps on all platforms at a cost distributed

according to FJ , whereas the others face platform-specific development costs, symmet-

rically and independently distributed across developers, with marginal c.d.f. FI ; we

also maintain Assumption 3. If all platforms charge the same commission a, in the sym-

metric continuation equilibrium each platform attracts a fraction 1/n of consumers and

ŷSn (a) = αŷJ (a) + (1− α)ŷSI (a, n) apps, where the proportion of active joint decision

makers remains given by (21), whereas for independent decision makers it becomes:

ŷSI (a, n) ≡ FI

(
1− a
n

πm
)
. (30)

The resulting subsidy is σ̂Sn (a) ≡ (sm + aπm) ŷSn (a), and there is again full pass-

through: the (quality-adjusted) price and profit are P̂ S
n (a) ≡ P S

n

(
σ̂Sn (a) , σ̂Sn (a)

)
=

t−σ̂Sn (a) and Π̂S
n (a) ≡ ΠS

n (0) = t/n. As before, maximizing consumer surplus amounts

to maximizing the subsidy σ̂Sn (a), and platforms’ profit is again independent of the

commission. Maximizing social welfare takes into account developers’ profit, which

can be expressed as Π̂S
D (a, n) ≡ (1− a)πmŷSn (a)− K̂S

n (a), where the total investment

cost is equal to:

K̂S
n (a) ≡ α

∫ (1−a)πm

0

kdFJ(k) + (1− α)n

∫ (1−a)π
m

n

0

kdFI(k).

Building on this leads to:

Lemma 7 (multiple platforms - benchmarks)

(i) The commission that maximizes social welfare does not depend on the number of

platforms; it thus remains equal to aW = −sm/πm (< 0), regardless of n, α or t,

and generates zero subsidy: σ̂Sn
(
aW
)

= 0.

(ii) The commission that maximizes consumer surplus (and, thus, platforms’ sub-

sidy), aSn (α), does not depend on t; it moreover lies strictly between aW and 1,

and generates a positive subsidy: σ̂Sn
(
aSn (α)

)
> 0; furthermore, for any α in

[0, 1], aSn (α) is bounded away from 1 as n goes to infinity.

Proof. See Online Appendix O-B.1.2.

29



Remark 6 (monopoly profit) As total demand remains inelastic, Remark 4 ex-

tends to more than 2 platforms: the commission aS also maximizes the monopoly

profit that an integrated firm, operating all platforms, could obtain when exploiting

consumers.

From Lemma 6, in stage 1 each Pi chooses its commission so as to maximize its

subsidy advantage ∆i, as in the Hotelling duopoly setting, and a marginal deviation

has again only a second-order effect on platforms’ consumer bases. Building on these

observations leads to:

Proposition 5 (multiple platforms) For t large enough, there exists a unique equi-

librium, which is symmetric. Furthermore, whenever a symmetric equilibrium exists,

it is unique and the equilibrium commission, aCn (α):

(i) is independent of t and increasing in α;

(ii) tends to 1, thus choking-off development of apps, as n goes to infinity.

Proof. See Online Appendix O-B.1.3.

The proposition shows that what matters is not the intensity of platform compe-

tition, reflected in t, but the number of platforms, n. Increasing this number reduces

each platform’s share of consumers, which in turn tilts the balance in favor of joint de-

velopment. This has therefore the same effect as an increase in the proportion of joint

decision makers, α: increasing n or α exacerbates the importance of platform com-

plementarity and thus widens the gap between the equilibrium commission, aCn (α),

and the consumer-surplus maximizing one, aSn (α). Furthermore, in both instances,

pushing the logic to its limit chokes-off the development of apps: aCn (α) tends to 1 as

n goes to infinity or α tends to 1. These insights are in line with the situation observed

in the Chinese smartphone market, in which five large competing manufacturers, each

controlling its own app store, charge a 50 percent commission to app developers.

Example 1 (cont’d) We show in Online Appendix O-B.1.3 that, when development

costs are uniformly distributed over [0, 1] (i.e., FI(k) = FJ(k) = k ), the commission

that maximizes consumer surplus is independent of n (and thus remains given by (23),

which does not depend on α either); platform competition yields instead:

aCn (α) ≡ πm − sm − (n− 1)απm

2πm + (n− 2)απm
= 1− (1− α)πm + sm

2πm + (n− 2)απm
,

which strictly increases with n for any given α > 0.
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5.2 Sequential development

In practice, app development is a risky venture, as the success of apps is uncertain. To

mitigate this risk, developers often develop their apps for one platform first, and then

port it onto other platforms if sufficiently successful. We note here that our insights

carry over when accounting for this possibility.

To see why, suppose that (i) apps are popular with some probability and of no value

otherwise, and (ii) porting an app only costs a small fraction of the initial development

investment. It readily follows that popular apps are all ported, regardless of the

platform for which they were initially developed. As a result, both platforms attract

the same relevant apps; an increase in either commission has therefore a negative

impact on the rival platform’s app base.

We show in Online Appendix O-B.2 that this remains the case as long as (i) un-

successful apps are sufficiently less valuable than popular ones, and (ii) the cost of

porting an app on a given platform is sufficiently lower than the cost of developing

the app from scratch for that platform. Specifically, we adapt the Hotelling setting of

Section 4 by supposing that an app is popular with probability λ ∈ (0, 1). If popular,

it generates as before a revenue ri = (1 − ai)πmDi on Pi. Otherwise, only a fraction

η ∈ [0, 1) of consumers find it interesting; it thus generates a revenue ηri and an ex-

pected surplus ηsm.43 The success of an app is idiosyncratic and independent of the

platform for which it is initially developed. We assume further that, for i 6= j ∈ {1, 2},
each app can be developed for Pi at cost ki and then ported onto Pj at cost δkj,

where k1 and k2 are independently drawn from the same distribution over
[
k, k̄
]
, and

δ ∈ (0, 1). Finally, we suppose that:

η <
2δk

sm + πm
(<)

2k

sm + πm
<

2λ

1 + λ
.

The first inequality ensures that unsuccessful apps are never ported, whereas the last

one ensures that apps with low enough costs are developed.44

In a symmetric equilibrium, each platform offers a revenue rC ≡ (1− aC)πm/2 to

successful apps. Hence, developing an app for Pi yields an expected profit equal to

ρC − ki, where

ρC ≡ [λ+ (1− λ) η] rC ,

43We maintain the assumption that consumers learn their app values after joining a platform.
44In equilibrium, platforms charge a > −sm/πm to obtain a positive subsidy; hence, the revenue

generated by unsuccessful apps, η (1− a)πm/2, cannot exceed η (sm + πm) /2; the first condition
implies that this cannot cover the lowest possible cost of porting an app, δk. The last condition
ensures instead that charging a close enough to −sm/πm generates a positive app base: developers
with (k1, k2) close to (k, k) then find it profitable to develop their app and port it if popular. For any
λ, sm, πm and δ, both conditions hold for low enough k and η.
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whereas developing it for Pi and porting it when successful generates a profit ρC−ki+
λ
(
rC − δkj

)
. Hence, if a developer faces ki < kj, for i 6= j ∈ {1, 2}, then (see Figure

2):

𝑟𝑟𝐶𝐶

𝛿𝛿

(𝑘𝑘, 𝑘𝑘)

𝑘𝑘1 = 𝜙𝜙𝐶𝐶  (𝑘𝑘2)

𝑘𝑘2 = 𝜙𝜙𝐶𝐶(𝑘𝑘1)

𝑆𝑆1

𝑘𝑘1

𝑘𝑘2

𝜌𝜌𝐶𝐶

𝜌𝜌𝐶𝐶

𝑟𝑟𝐶𝐶

𝛿𝛿

𝑀𝑀2

𝑀𝑀1

𝑆𝑆2

Figure 2: App development and porting decisions.

• if δkj > rC and ki < ρC (region Si), then the app is developed for Pi but not

ported, regardless of its success (single-homing on Pi);

• if instead δkj < rC and ki < φC (kj) (region Mi), where

φC (k) ≡ ρC + λ
(
rC − δk

)
,

then the app is developed for Pi and ported when successful (possibly multihom-

ing, starting on Pi);

• in all other cases, the app is not developed.

We show in Online Appendix O-B.2 that an increase in Pi’s commission affects its

rival’s weighted app base (where the weights are respectively equal to λ + (1 − λ)η

for the region Mj ∪ Sj, λ for the region Mi and 0 everywhere else) through its impact

on the expected revenue from “developing and porting when popular”. On the one
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hand, reducing this expected revenue induces some developers to drop out: the region

Mi ∪Mj thus shrinks, which adversely affects Pj’s app base (by a factor λ for Mi and

λ + (1− λ) η for Mj). On the other hand, it induces other developers to switch from

Pi to Pj as initial development platform: the region Mj thus grows at the expense

of Mi, which expands Pj’s app base by a factor (1− λ) η.45 It follows that raising

Pi’s commission reduces Pj’s weighted app base whenever the revenue generated by

unsuccessful apps is small enough (i.e., η low enough), implying that the popular apps

– which benefit from economies of scope – play a large role.

6 Policy implications

The debate on the commissions charged to developers has centered on the effectiveness

of platform competition; on the one hand, Apple and Google argue that competition

is intense and acts as a disciplining device;46 on the other hand, regulators argue that

commissions are excessive because, in practice, competition is limited due to consumer

preferences and biases, as well as to switching costs and entrenchment strategies.47 Our

analysis proposes a drastically different perspective,48 in that platform competition may

be the source of the problem, rather than a cure.

Specifically, in Section 5.1, we find that increasing the number of competing plat-

forms leads to even higher commissions, rather than lower ones; and in Sections 4 and

5.1, the degree of substitution between platforms has no incidence whatsoever on the

commissions. These insights suggest that a policy intervention designed to foster plat-

form competition is unlikely to have the desired impact on the commissions charged

to developers.

Our analysis also highlights the role of economies of scope and joint development.

In Section 3.3.3, competition generates commissions that exceed the level maximizing

consumer surplus whenever there are economies of scope; in Section 5.2, the same oc-

curs whenever popular apps (i.e., those benefiting from economies of scope) play a key

role – as appears to be the case in practice. In the same vein, in Sections 4 and 5.1,

the equilibrium commissions increase with the proportion of joint development. This

45Increasing Pi’s commission also reduces the revenue from “developing for Pi and never porting”
(the region Si thus shrinks), and induces some developers to switch from “developing for Pj and
porting if successful” to “developing for Pj and never porting” (the region Sj thus expands at the
expense of Mj). However, these effects have no impact on Pj ’s app base.

46For instance, Apple argued the 30 percent commission was determined in competitive conditions
in 2008 and has not increased since then (U.K. CMA, 2022, p. 133). See also the responses of Apple
and Google to the interim report of the CMA(2021).

47See, e.g., U.K. CMA (2022) at p. 138: “Overall, we consider that the lack of competition faced
by the App Store and Play Store allows them to charge above a competitive rate of commission to
app developers”.

48We thank Jorge Padilla for this comment.
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suggests that policy measures designed to foster interoperability may actually exacer-

bate the problem rather than solve it – indeed, in the case of perfect interoperability,

all developers become joint decision makers.

In contrast, encouraging competition between multiple app stores on the same

platform, or side-loading (i.e., allowing app downloads from third-party websites) may

constitute promising avenues,49 provided that the access conditions for rival app stores

or side-loaded apps are properly regulated and enforced.50

49It is worth noting that the Digital Markets Act aims at promoting interoperability as well as app
store competition and side-loading.

50The experience of South Korea highlights the need to supervise access conditions. In response
to a ban on the exclusivity of their integrated payment systems, Apple and Google each imposed
a 26% licensing fee on developers opting for third-party payment systems; as a result, the ban had
no significant impact on app development – see Chang and Miller (2024). For a recent analysis of
desirable access conditions, see Bisceglia and Tirole (2023).
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Appendix

A Stylized approach

A.1 Proof of Lemma 1

We already established that maximizing consumer surplus or platforms’ profit amounts

to maximizing the subsidy σ̂ (a). By revealed preferences, we then have:

(
sm + aSπm

)
ŷ
(
aS
)

= σ̂
(
aS
)
≥ σ̂ (0) = smŷ (0) > 0,

where the last inequality stems from ŷ (0) = y∗ (0, 0) > 0. As by construction ŷ (·) ≥
0, it follows that ŷ

(
aS
)
> 0. The solution is therefore interior and the first-order

condition leads to (10).

A.2 Proof of Lemma 2

The following lemmas will be useful:

Lemma A.1 App developers’ profit, Π̂D (a), and the number of apps on each platform,

ŷ (a), both vary like r̂ (a): for any a, a′ ≤ 1, Π̂D (a) > Π̂D (a′) ⇔ ŷ (a) > ŷ (a′) ⇔
r̂ (a) > r̂ (a′).

Proof. The result follows from that, in equilibrium, a developer’s expected profit

is given by πD (r̂ (a) ,k), which is increasing in r̂ (a) in the range r̂ (a) ≥ 0 (that

is, for a ≤ 1), and strictly so for the marginal developers (i.e., those for which

max {r̂ (a)− k1, r̂ (a)− k2, 2r̂ (a)− k} = 0) as well as for the infra-marginal ones (i.e.,

those for which max {r̂ (a)− k1, r̂ (a)− k2, 2r̂ (a)− k} > 0). Hence, an increase in

r̂ (a): (i) increases the number of apps present on a platform, ŷ (a), by inducing

marginal developers to develop their apps; and (ii) also increases developers’ total

profit, Π̂D (a), both by increasing the number of apps present on the platforms, and

by increasing the individual profit generated by each such app.

Lemma A.2 We have:

(i) σ̂′(aW ) > 0 and D̂′
(
aW
)
≥ 0;

(ii) ŷ′
(
aW
)
< 0.

Proof. Part (i). Recall that the quality-adjusted price, P̂ (a), is decreasing in the

subsidy σ̂ (a); hence, the consumer demand, D̂ (a), is weakly increasing in the subsidy

σ̂ (a). Therefore, if σ̂′(aW ) ≤ 0, then a marginal reduction in a from aW would:
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• weakly increase consumer surplus and platforms’ profit, from Lemma 1;

• strictly increase developers’ revenue share, 1− a, and weakly increase consumer

demand D̂ (a) ; hence, this would therefore strictly increase developers’ revenue,

r̂ (a), and thus, from Lemma A.1, developers’ profit, Π̂P (a).

It follows that that a marginal reduction in a from aW would strictly enhance social

welfare, a contradiction. Therefore, σ̂′(aW ) > 0, which in turn implies D̂′
(
aW
)
≥ 0.

Part (ii). It follows from σ̂′(aW ) > 0 that a marginal increase in a from aW would

strictly increase consumer surplus and platforms’ profit. As social welfare is maximal

for a = aW , it must be the case that such a marginal increase in a would strictly reduce

developers’ profit; hence, from Lemma A.1, ŷ′
(
aW
)
< 0.

Total welfare, Ŵ (a), is given by (11). Hence, Ŵ ′ (a) = Ŝ ′ (a) + Π̂′P (a) + Π̂′D (a),

where:

Ŝ ′ (a) + Π̂′P (a) = −2D̂ (a) P̂ ′ (a) + 2
{[
P̂ ′ (a) + σ̂′ (a)

]
D̂ (a) +

[
P̂ (a) + σ̂ (a)

]
D̂′ (a)

}
= 2

{
σ̂′ (a) D̂ (a) +

[
P̂ (a) + σ̂ (a)

]
D̂′ (a)

}
(A.1)

and:51

Π̂′D (a) = 2r̂′ (a) ŷ (a) = −2πmŷ (a) D̂ (a) + 2 (1− a) πmŷ (a) D̂′ (a) . (A.2)

From Lemma 1, consumer surplus, Ŝ (a), platforms’ profit, Π̂P (a), and platforms’

subsidy, σ̂ (a) = (sm + aπm) ŷ (a), are all maximal for a = aS; hence:

S
(
aS
)

+ ΠP

(
aS
)
≥ S

(
aW
)

+ ΠP

(
aW
)
, (A.3)(

sm + aSπm
)
ŷ
(
aS
)
≥

(
sm + aWπm

)
ŷ
(
aW
)
, (A.4)

and:

Ŝ ′
(
aS
)

= Π̂′P
(
aS
)

= D̂′
(
aS
)

= 0. (A.5)

Together, (A.2) and (A.5) lead to:

Ŵ ′ (aS) = Π̂′D
(
aS
)

= −2πmŷ
(
aS
)
D̂
(
aS
)
< 0,

where the inequality follows from ŷ
(
aS
)
> 0 and D̂

(
aS
)
> 0 (from Lemma 1). It

follows that Ŵ
(
aW
)
> Ŵ

(
aS
)

(as starting from a = aS, a slight reduction in a would

51The expression reflects the negative impact of an increase in a on the revenue r̂ (a) of the ŷ (a)
developers present on each platform. Raising a also induces some marginal developers to drop out,
and may also induce some marginal multihomers to switch to single-homing; however, these additional
impacts have zero first-order effect.
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increase welfare, which is maximal for a = aW ), that is:

S
(
aW
)

+ ΠP

(
aW
)

+ ΠD

(
aW
)
> S

(
aS
)

+ ΠP

(
aS
)

+ ΠD

(
aS
)
. (A.6)

Combining (A.3) and (A.6) yields:

ΠD

(
aW
)
> ΠD

(
aS
)
.

It then follows from Lemmas 1 and A.1 that:

r̂
(
aW
)

> r̂
(
aS
)
> 0, (A.7)

ŷ
(
aW
)

> ŷ
(
aS
)
> 0. (A.8)

It moreover follows from (A.7) that:

aW < 1. (A.9)

Furthermore, combining (A.4) and (A.8) yields:

sm + aWπm ≤
(
sm + aSπm

) ŷ (aS)
ŷ (aW )

< sm + aSπm,

implying:

aW < aS.

Finally, it follows from ŷ
(
aW
)
> 0 that the social optimum is interior; the welfare-

maximizing commission is thus characterized by the first-order condition Ŵ ′ (aW ) = 0,

which, using (A.1) and (A.2), amounts to:

(
sm + aWπm

)
ŷ′
(
aW
)
D̂
(
aW
)

= −
[
P̂
(
aW
)

+ σ̂
(
aW
)

+
(
1− aW

)
πmŷ

(
aW
)]
D̂′
(
aW
)
.

Dividing by −ŷ′
(
aW
)
D̂
(
aW
)

(where ŷ′
(
aW
)
< 0 from Lemma A.2, and D̂ (·) > 0 by

assumption) then leads to:

sm + aWπm =
P̂
(
aW
)

+ σ̂
(
aW
)

+
(
1− aW

)
πmŷ

(
aW
)

−ŷ′ (aW )

D̂′
(
aW
)

D̂ (aW )
,

where:

• from Lemma A.2, −ŷ′
(
aW
)
D̂
(
aW
)
> 0 (as just noted) and D̂′

(
aW
)
≥ 0;

• P̂
(
aW
)

+ σ̂
(
aW
)
> 0 (as platforms’ profit is positive from Assumption 1) and(

1− aW
)
πmŷ

(
aW
)
> 0 (as ŷ

(
aW
)
> 0 (from (A.8)) and aW < 1 (from (A.9)).
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Hence, sm + aWπm ≥ 0, with a strict inequality unless D̂′
(
aW
)

= 0.

A.3 Proof of Corollary 1

From Lemma A.2, σ̂′(aW ) > 0. It follows that σ̂
(
aS
)
> σ̂

(
aW
)

(as starting from

a = aW , a slight increase in a would increase the subsidy, which is maximal for

a = aS). Furthermore, ŷ
(
aW
)
> 0 from (A.8) and, from the end of the proof of

Lemma 2, sm + aWπm = 0 if D̂′
(
aW
)

= 0, and sm + aWπm > 0 otherwise. It follows

that σ̂
(
aW
)
≥ 0, with a strict inequality unless D̂′

(
aW
)

= 0.

A.4 Proof of Proposition 1

Assumption 2(b) (namely, equilibrium uniqueness and local stability) implies that

a∗ > aS if and only R
(
aS
)
> aS; Assumption 2(a) (namely, strict quasi-concavity)

ensures in turn that R
(
aS
)
> aS if and only if ∂1Π∗

(
aS, aS

)
> 0. Furthermore (with

σS ≡ σ∗
(
aS, aS

)
):

∂1Π∗
(
aS, aS

)
= ∂1Πe

(
σS, σS

)
∂1σ

∗ (aS, aS)+ ∂2Πe
(
σS, σS

)
∂2σ

∗ (aS, aS)
= −

[
∂1Πe

(
σS, σS

)
− ∂2Πe

(
σS, σS

)]
∂2σ

∗ (aS, aS)
= −

[
∂1Πe

(
σS, σS

)
− ∂2Πe

(
σS, σS

)] (
sm + aSπm

)
∂2y

∗ (aS, aS) ,
where the second equality stems from the first-order condition

0 = σ̂′
(
aS
)

= ∂1σ
∗ (aS, aS)+ ∂2σ

∗ (aS, aS) ,
and the last equality follows from (4). From Assumption 1(b), ∂1Πe

(
σS, σS

)
>

∂2Πe
(
σS, σS

)
. It follows that ∂1Π∗

(
aS, aS

)
> 0 if and only if ∂2y

∗ (aS, aS) < 0,

which concludes the argument. A similar reasoning establishes that a∗ < aS (resp.,

a∗ = aS) if and only if ∂2y
∗ (aS, aS) > 0 (resp., ∂2y

∗ (aS, aS) = 0).

A.5 Proof of Lemma 3

The proof relies on two claims.

Claim A.1 (direct effect) IS satisfies:

IS = AS∂2y
∗ (aS, aS) .
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Proof. By construction, for ai = aj = aS we have:

∂1σ
∗ (aS, aS)+ ∂2σ

∗ (aS, aS) = 0, (A.10)

which in turn implies:

∂1P
∗ (aS, aS)+∂2P

∗ (aS, aS) = [∂1P
e (·) + ∂2P

e (·)]
[
∂1σ

∗ (aS, aS)+ ∂2σ
∗ (aS, aS)] = 0,

(A.11)

where ∂iP
e (·) is evaluated at σ1 = σ2 = σS. Likewise:

∂1D
∗ (aS, aS)+∂2D

∗ (aS, aS) = [∂1D (·) + ∂2D (·)]
[
∂1P

∗ (aS, aS)+ ∂2P
∗ (aS, aS)] = 0,

(A.12)

where ∂iD (·) is evaluated at P1 = P2 = P S.

Furthermore, differentiating (5) and using (A.10) yields:

∂2P
∗ (aS, aS) = ∂1P

e (·) ∂2σ
∗ (aS, aS)+∂2P

e (·) ∂1σ
∗ (aS, aS) = [∂1P

e (·)− ∂2P
e (·)] ∂2σ

∗ (aS, aS) .
(A.13)

Similarly, differentiating (6) leads to:

∂2D
∗ (aS, aS) = ∂1D (·) ∂2P

∗ (aS, aS)+ ∂2D (·) ∂1P
∗ (aS, aS)

= [∂1D (·)− ∂2D (·)] ∂2P
∗ (aS, aS)

= [∂1D (·)− ∂2D (·)] [∂1P
e (·)− ∂2P

e (·)]
(
sm + aSπm

)
∂2y

∗ (aS, aS) ,(A.14)

where the second equality stems from (A.11) and the last one from (A.13) and (4).

We thus have (with ∂1Y (·) evaluated at r1 = r2 = rS):

IS =
(
1− aS

)
πm
[
∂2D

∗ (aS, aS) ∂1Y (·) + ∂1D
∗ (aS, aS) ∂2Y (·)

]
=

(
1− aS

)
πm [∂1Y (·)− ∂2Y (·)] ∂2D

∗ (aS, aS)
= AS∂2y

∗ (aS, aS) ,
where the second equality is from (A.12) and the last one is from (A.14) and (16).

Claim A.2 (stability) AS < 1.

Proof. Suppose that, starting from a1 = a2 = aS, y1 = y2 = yS, σ1 = σ2 = σS,

P1 = P2 = P S, D1 = D2 = DS ≡ D∗
(
aS, aS

)
, and r1 = r2 = rS, there is an exogenous

transfer of dy from yj to yi (i.e., dyi = −dyj = dy > 0), and consider the implications
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for the app and customer bases. We have:

dσi =
(
sm + aSπm

)
dyi = dσ ≡ (sm + aπm) dy,

dσj = (sm + aπm) dyj = − (sm + aπm) dy = −dσ,

dPi = ∂1P
e
(
σS, σS

)
dσi + ∂2P

e
(
σS, σS

)
dσj = dP ≡

[
∂1P

e
(
σS, σS

)
− ∂2P

e
(
σS, σS

)]
dσ,

dPj = ∂2P
e
(
σS, σS

)
dσ − ∂1P

e
(
σS, σS

)
dσ = −dP,

dDi = ∂1D
(
P S, P S

)
dPi + ∂2D

(
P S, P S

)
dPj = dD ≡

[
∂1D

(
P S, P S

)
− ∂2D

(
P S, P S

)]
dP,

dDj = ∂2D
(
P S, P S

)
dP − ∂1D

(
P S, P S

)
dP = −dD,

dri =
(
1− aS

)
πmdDi = dr ≡

(
1− aS

)
πmdD,

drj = −
(
1− aS

)
πmdD = −dr.

These expected changes in the revenues offered by the two platforms induce in turn a

further adjustment in platforms’ app bases, given by:

dy′i = ∂1Y
(
rS, rS

)
dri + ∂2Y

(
rS, rS

)
drj = dy′ ≡

[
∂1Y

(
rS, rS

)
− ∂2Y

(
rS, rS

)]
dr,

dy′j = ∂1Y
(
rS, rS

)
dri + ∂2Y

(
rS, rS

)
drj = −

[
∂1Y

(
rS, rS

)
− ∂2Y

(
rS, rS

)]
dr = −dy′.

Combining the above observations leads to:

dy′ =
[
∂1Y

(
rS, rS

)
− ∂2Y

(
rS, rS

)]
dr

=
[
∂1Y

(
rS, rS

)
− ∂2Y

(
rS, rS

)] (
1− aS

)
πm

×
[
∂1D

(
P S, P S

)
− ∂2D

(
P S, P S

)] [
∂1P

e
(
σS, σS

)
− ∂2P

e
(
σS, σS

)] (
sm + aSπm

)
dy

= ASdy.

The stability of the continuation equilibrium requires |dy′| < dy, which in turn implies

AS < 1.

It follows from Claim that:

∂2y
∗ (aS, aS) = DS + IS = DS + AS∂2y

∗ (aS, aS) ,
or: (

1− AS
)
∂2y

∗ (aS, aS) = DS.
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Given Claim A.2, we can divide both sides of the above equation, which yields (17).

A.6 Proof of Corollary 2

From Proposition 2, aC = aS, characterized by the first-order condition

∂1σ
∗ (aS, aS)+ ∂2σ

∗ (aS, aS) = 0.

Furthermore, from Proposition 1 and Lemma 3 and DS = 0, with independent devel-

opment we have:

∂2σ
∗ (aS, aS) =

(
1− aS

)
πm∂2y

∗ (aS, aS) = 0.

It follows that aS satisfies ∂1σ
∗ (aS, aS) = 0, and thus coincides with aσ.

A.7 Proof of Proposition 3

We have:

aC ≷ aS ⇐⇒ ∂2y
∗ (aS, aS) ≶ 0

⇐⇒ DS = −πmDS∂2Y
(
rS, rS

)
≶ 0

⇐⇒ ∂2Y
(
rS, rS

)
≷ 0,

where the first equivalence stems from Proposition 1, the second one from Lemma 3

and the third one from πmDS > 0. The following lemma completes the proof:

Lemma A.3 We have:

∂2Y
(
rS, rS

)
≷ 0 if and only if s ≷ 0. (A.15)

Proof. We consider in turn the cases of economies and diseconomies of scope.

• Case 1: s > 0. Consider a marginal increase in rj, starting from ri = rj = rS. We

then have:

ri + rj − k > (ri − ki) + (rj − kj) . (A.16)

Developers at the margin between developing or not their apps for Pi are therefore

as follows (see Figure 3):

• First of all, no such developer can be indifferent between developing for Pi only

and developing for Pj only. This would require ri − ki = rj − kj > 0, which,
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Figure 3: Economies of scope (s > 0) [Illustration for r1 = 10 and r2 = 6 and
κ (k1, k2; s) = exp (−s) (k1 + k2), with s = 2/10].

together with (A.16), would imply ri+rj−k > 0. The developer would therefore

strictly prefer developing its app for both platforms; hence, it could not be

marginal. In the same vein, we do not need to consider those indifferent between

developing for both platforms and developing for Pi only (and strictly preferring

these options to not developing for Pi), as they are not marginal for Pi.

• Concerning those indifferent between developing for Pi only (yielding ri − ki)

and not developing at all (yielding 0) (for instance, those with kj high enough),

their decision does not depend on rj (as rj affects none of these options).

• Concerning those indifferent between developing for both platforms (yielding

ri+ rj−k) and developing for Pj only (yielding rj−kj) (for instance, those with

kj low enough), their decision again does not depend on rj (as rj affects both

options in the same way).

• Finally, concerning those indifferent between developing their apps for both plat-

forms (yielding ri + rj − k) or not developing at all (yielding 0); their decision

does depend on rj: increasing rj encourages more developers to develop their

apps for the two platforms.

It follows that ∂2Y
(
rS, rS

)
> 0.

• Case 2: s < 0. Consider again a marginal increase in rj, starting from ri = rj = rS.

We then have:

ri + rj − k < (ri − ki) + (rj − kj) . (A.17)
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Figure 4: Diseconomies of scope (s < 0) [Illustration for r1 = 10 and r2 = 6 and
κ (k1, k2; s) = exp (−s) (k1 + k2), where s = −2/10].

Developers at the margin between developing their apps for Pi and not developing

are as follows (see Figure 4):

• First of all, no such developer can be indifferent between developing for both

platforms (yielding ri + rj − k) and not developing at all. This would require

ri+rj−k = 0, which, together with (A.17), would imply max {ri − ki, rj − kj} >
0. The developer would therefore strictly prefer developing its app for at least one

of the platforms; hence, it could not be marginal. Furthermore, as in case 1, we

do not need to consider those indifferent between developing for both platforms

and developing for Pi only (and strictly preferring these options to not developing

for Pi).

• As in case 1, regarding those indifferent between developing for Pi only and not

developing at all and those indifferent between developing for both platforms

and developing for Pj only, their decision does not depend on rj.

• Finally, concerning those indifferent between developing their apps for Pi only

(yielding ri − ki), and for Pj only (yielding rj − kj), their decision does depend

on rj: increasing rj encourages those marginal developers to switch from Pi to

Pj.

It follows that ∂2Y (·) < 0.

Summing-up, s > 0 implies ∂2Y
(
rS, rS

)
> 0, whereas s < 0 implies ∂2Y

(
rS, rS

)
<

0. Together, these two implications yield (A.15).
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B Illustration

B.1 Proof of Lemma 4

The profit Πi = (Pi + σi)D (Pi, Pj) is strictly quasi-concave in Pi and maximal for

Pi = R (Pj) ≡
t− σi + Pj

2
.

As this best-response has a slope lower than 1, the usual tâtonnement process converges

towards a unique, stable equilibrium, in which each Pi charges Pi = PH (σi, σj), leading

to

Pi + σi = 2tD (Pi, Pj) = t+
σi − σj

3
,

and, thus, to Πi = ΠH (σi, σj).

B.2 Proof of Lemma 5

As mentioned in the text, from Lemma 2 and D̂′(a) = 0, aW = −sm/πm, implying

σ̂(aW ) = 0, regardless of α and t. Furthermore, from (19) – (22), σ̂(a) is independent

of t, implying that aS is also independent from it. This establishes part (ii) of the

Lemma.

From Corollary 1, aS generates a positive subsidy; hence:

sm + aSπm > 0 and ŷ
(
aS
)
> 0.

This, in turn, implies that aS lies strictly between aW = −sm/πm and 1, which estab-

lishes part (i).

B.3 Proof of Proposition 4

We first establish uniqueness and existence for t large enough (part 1), before studying

the properties of symmetric equilibria (part 2).

Part 1. As noted in the text, in stage 1a each Pi seeks to maximize its subsidy advan-

tage, ∆∗ (ai, aj). Furthermore, as t → +∞, the continuation equilibrium conditions

(24) to (26) yield, up to O (1/t):

D∗ (ai, aj) '
1

2
,
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and:

y∗I (ai, aj) ' ŷ∗I (ai) ≡ (1− α)FI((1− ai)
πm

2
),

y∗J (ai, aj) ' ŷ∗J (a1, a2) ≡ αFJ((1− a1 + a2

2
)πm).

Plugging-in these expressions in (28) yields, up to O (1/t):

y∗ (ai, aj) ' ŷ∗ (ai, aj) ≡ αŷ∗J (a1, a2) + (1− α) ŷ∗I (ai) ,

σ∗ (ai, aj) ' σ̂∗ (ai, aj) ≡ (sm + aiπ
m) ŷ∗ (ai, aj) ,

∆∗ (ai, aj) ' ∆̂∗ (ai, aj) ≡ σ̂∗ (ai, aj)− σ̂∗ (aj, ai) .

In what follows, we consider the limit game Γ∞ in which each platform seeks

to maximize ∆̂∗ (ai, aj). We show that there exists a unique equilibrium, in which

platforms’ best-responses are moreover uniquely defined. By continuity, this establishes

existence and uniqueness of the competitive equilibrium for t large enough.

We first note that we can restrict attention to non-negative subsidies:

Claim B.1 (non-negative subsidies) In any equilibrium of game Γ∞, both com-

missions are strictly higher than aW .

Proof. Consider a candidate equilibrium of game Γ∞ yielding commissions a1 and a2,

app bases y ≡ αŷ∗J (a1, a2) and {yi ≡ (1− α) ŷ∗I (ai)}i=1,2, and subsidies {σi ≡ (sm +

aiπ
m) (y + yi)}i=1,2. Without loss of generality, suppose that ai ≤ aj, implying yi ≥ yj,

and let ∆i ≡ σi − σj denote Pi’s subsidy advantage; finally, following a deviation to

a′i 6= ai, let y′ ≡ αŷ∗J (a′i, aj), y
′
i ≡ (1 − α)ŷ∗I (a′i), σ

′
i ≡ (sm + aiπ

m) (y′ + y′i) , σ
′
j ≡

(sm + ajπ
m) (y′ + yj) and ∆′i ≡ σ′i − σ′j denote the resulting app bases, subsidies and

subsidy advantage. We have:

• If ai < aW , then σi < 0 (as sm + aiπ
m < 0 and y + yi ≥ αŷ∗J

(
aW , 1

)
+

(1− α) ŷ∗I
(
aW
)
> 0); consider now a deviation to a′i = aW , implying σ′i = 0

(as sm + a′iπ
m = 0), y′ ≤ y and y′i ≤ yi. We have:

– if aj < aW , then σi ≤ σj (as sm + aiπ
m ≤ sm + ajπ

m < 0 and yi ≥ yj) and

σ′j < 0 = σ′i; hence, ∆i ≤ 0 < −σ′j = ∆′i, implying that the deviation is

strictly profitable;

– if instead aj = aW , then σj = σ′j = 0; hence, ∆i = σi − 0 < 0 = ∆′i,

implying that the deviation is again strictly profitable;

45



– finally, if aj > aW , then σj ≥ σ′j ≥ 0 (as sm + ajπ
m > 0 and y ≥ y′ ≥ 0);

hence, ∆i = σi− σj < σ′i− σ′j = ∆′i (as σi < 0 = σ′i and σj ≥ σ′j), implying

that the deviation is once more strictly profitable.

• If instead ai = aW < aj, then σi = 0 (as sm + aiπ
m = 0); two cases can be

distinguished:

– if σj > 0, implying ∆i = −σj < 0, a deviation to a′i = aj would lead to

σ′i = σ′j and ∆′i = 0 > ∆i, and would therefore be strictly profitable.

– if instead σj = 0 (which can happen if aj = 1 and α = 0, implying y = yj =

0), then ∆j = ∆i = 0; a deviation by j to, say, a′j = 0 would lead to σ′i = 0

(as sm + aiπ
m = 0) and ∆′j = σ′j = smŷ∗I (0) > 0 = ∆j, and would therefore

be strictly profitable.

• Finally, if ai = aj = aW , then σi = σj = ∆i = 0 (as sm+aiπ
m = sm+ajπ

m = 0);

a deviation to, say a′i = 0 would lead to σ′j = 0 (as sm + ajπ
m = 0) and

∆′i = σ′i = sm (y′ + y′i) = sm
[
αŷ∗J

(
aW , 0

)
+ (1− α) ŷ∗I (0)

]
> 0 = ∆i, and would

therefore be strictly profitable.

It follows that, in any equilibrium of game Γ∞, the commissions a1 and a2 are

strictly higher than aW .

Any commission a > 1 discourages app development and is formally equivalent to

a′ = 1. Hence, it follows from Claim B.1 that, without loss of generality we can restrict

attention to commissions lying in the range (aW , 1]. We have:

∂∆̂∗ (ai, aj)

∂ai
= πm

[
(1− α)FI

(
(1− ai)πm

2

)
+ αFJ

((
1− a1 + a2

2

)
πm
)]

−(sm + aiπ
m)(1− α)fI

(
(1− ai)πm

2

)
πm

2

−πm(ai − aj)αfJ
((

1− a1 + a2

2

)
πm
)
πm

2
.

Next, we show that any equilibrium must be symmetric:

Claim B.2 (symmetry) In any equilibrium of game Γ∞, commissions are symmet-

ric.

Proof. Consider an asymmetric candidate equilibrium and, without loss of generality,

suppose that (aW <)ai < aj(≤ 1); we then have:

δ (ai, aj) ≡
∂∆̂∗ (ai, aj)

∂ai
− ∂∆̂∗ (aj, ai)

∂aj
= αδJ (ai, aj) + (1− α)δI (ai, aj) ,
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where

δJ (ai, aj) ≡ (aj − ai) fJ
((

1− a1 + a2

2

)
πm
)

(πm)2 > 0,

where the inequality stems from aj > ai and fJ((1−(a1+a2)/2)πm) ≥ fJ ((1− ai) πm) >

0, and

δI (ai, aj) ≡
[
FI

(
(1− ai)πm

2

)
− FI

(
(1− aj)πm

2

)]
πm

−
[
(sm + aiπ

m) fI

(
(1− ai)πm

2

)
− (sm + ajπ

m) fI

(
(1− aj)πm

2

)]
πm

2
> 0,

where the inequality stems from FI ((1− a) πm/2) being decreasing in a, whereas sm+

aπm and fI ((1− a) πm/2) are both non-negative and increasing in a, from Assumption

3. It follows that δ (ai, aj) > 0 for any α ∈ [0, 1] and any (ai, aj) such that aW < ai <

aj ≤ 1. This, in turn, implies that the commissions (ai, aj) cannot constitute an

equilibrium: if aj < 1, we should have

∂∆̂∗ (ai, aj)

∂ai
=
∂∆̂∗ (aj, ai)

∂aj
= 0,

implying δ (ai, aj) = 0, a contradiction. If instead aj = 1, we should have

∂∆̂∗ (ai, aj)

∂ai
= 0 ≤ ∂∆̂∗ (aj, ai)

∂aj
,

implying δ (ai, aj) ≤ 0, another contradiction.

Building on this, we now establish uniqueness:

Claim B.3 (uniqueness) If there exists an equilibrium of game Γ∞, it is unique.

Proof. For symmetric commissions, the derivative simplifies to:

∂∆̂∗ (ai, aj)

∂ai

∣∣∣∣∣
a1=a2=a

= πm(1− α)FI

(
(1− a) πm

2

)
+ πmαFJ ((1− a)πm)

− (sm + aπm) (1− α)fI

(
(1− a) πm

2

)
πm

2
. (B.1)

For α = 1, it boils down to FJ ((1− a) πm) πm ≥ 0, implying aC (α) = 1. For α < 1,

we have:
∂∆̂∗ (ai, aj)

∂ai

∣∣∣∣∣
a1=a2=1

= − (sm + πm) (1− α)fI (0)
πm

2
< 0.

47



It follows that any symmetric equilibrium satisfies the first-order condition
∂∆̂∗(ai,aj)

∂ai

∣∣∣
a1=a2=a

=

0, which can be expressed as φC (a;α) = 0, where (dividing by (1− α)πm):

φC (a;α) ≡ FI

(
(1− a) πm

2

)
+

α

1− α
FJ ((1− a) πm)− sm + aπm

2
fI

(
(1− a) πm

2

)
.

φC (a;α) is strictly decreasing in a under Assumption 3, and it satisfies (using sm +

aWπm = 0)

φC
(
aW ;α

)
= FI(

sm + πm

2
) +

α

1− α
FJ (sm + πm) > 0

and (using FI (0) = FJ(0) = 0)

φC (1;α) = −s
m + πm

2
fI (0) < 0,

where the inequalities stem from fI (0) > 0 (from Assumption 3). It follows that there

is a unique candidate symmetric equilibrium, which is moreover such that aC (α) ∈(
aW , 1

)
for α < 1, and aC (α) = 1 for α = 1.

To establish existence, we show that the function

ψ (a) ≡ ∆̂∗
(
a, aC (α)

)
is indeed maximal for a = aC (α). We first note that:

ψ′ (a) = πm(1− α)FI

(
(1− a) πm

2

)
− (sm + aπm) (1− α)fI

(
(1− a) πm

2

)
πm

2

+πmαFJ

(
(1− a) πm

2
+

(
1− aC (α)

)
πm

2

)

−πm
(
a− aC (α)

)
αfJ

(
(1− a) πm

2
+

(
1− aC (α)

)
πm

2

)
πm

2
,
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which by construction satisfies ψ′
(
aC (α)

)
= 0, and

ψ′′ (a) ' −2πm(1− α)fI

(
(1− a) πm

2

)
πm

2

+ (sm + aπm) (1− α)f ′I

(
(1− a)πm

2

)(
πm

2

)2

−2πmαfJ

(
(1− a)πm

2
+

(
1− aC (α)

)
πm

2

)
πm

2

+πm
(
a− aC (α)

)
αf ′J

(
(1− a) πm

2
+

(
1− aC (α)

)
πm

2

)(
πm

2

)2

.

For a ≥ aC (α), the second-order derivative is negative, as fI (·) > 0 ≥ f ′I (·) and

fJ (·) > 0 ≥ f ′J (·) under Assumption 3. Hence, in the range a ≥ aC (α), ψ (a) is

maximal for a = aC (α).

Furthermore, for a ≤ aC (α), we have ψ (a) ≤ ψ̂ (a), where:

ψ (a) ≤ ψ̂ (a) ≡ (sm + aπm) (1− α)FI

(
(1− a) πm

2

)
−
[
sm + aC (α)πm

]
(1− α)FI

([
1− aC (α)

]
πm

2

)
+πm

[
a− aC (α)

]
αFJ

([
1− aC (α)

]
πm
)

satisfies

ψ̂
′
(a) = πm(1− α)FI

(
(1− a) πm

2

)
− (sm + aπm) (1− α)fI

(
(1− a) πm

2

)
πm

2

+πmαFJ
([

1− aC (α)
]
πm
)
,

By construction, ψ̂
(
aC (α)

)
= ψ

(
aC (α)

)
= 0 and ψ̂

′ (
aC (α)

)
= ψ′

(
aC (α)

)
= 0.

Furthermore:

ψ̂
′′

(a) = −πm(1− α)fI

(
(1− a) πm

2

)
πm

+ (sm + aπm) (1− α)f ′I

(
(1− a) πm

2

)(
πm

2

)2

< 0,

where the inequality stems from fI (·) > 0 ≥ f ′I (·) under Assumption 3. It follows

that, in the range a ≤ aC (α), ψ (a) is again maximal for a = aC (α).

Part 2. We now focus on symmetric candidate equilibria, in which both platforms

thus set the same commission a. Suppose that P1, say, deviates to some a1 6= a, and
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let yIi(a1) ≡ y∗I (ai, aj) (with the convention a2 = a), yJ(a1) ≡ y∗J (ai, aj), and yi(a1) ≡
y∗ (ai, aj) denote the resulting app bases, and Di(a1) ≡ D∗ (ai, aj) and ∆i(a1) ≡
∆∗ (ai, aj) denote the user base and the subsidy advantage of Pi (by construction,

D1 + D2 = 1); finally, let ŷI , ŷJ , ŷ, D̂ and ∆̂ denote the equilibrium values (by

construction, D̂ = 1/2 and ∆̂ = 0).

From (26) and (25), we have (using a2 = a and D1 +D2 = 1):

yI1 = FI ((1− a1) πmD1) ,

yI2 = FI ((1− a) πm (1−D1)) ,

leading to:

dyI1
da1

= fI ((1− a1)πmD1) πm[(1− a1)
dD1

da1

−D1], (B.2)

dyI2
da1

= −fI ((1− a)πm (1−D1))πm (1− a)
dD1

da1

. (B.3)

Likewise, from (27) and (25), we have (using again a2 = a and D1 +D2 = 1):

yJ = FJ ((1− a) πm + (a− a1) πmD1) , (B.4)

leading to:

dyJ
da1

= fJ ((1− a) πm + (a− a1) πmD1) πm[(a− a1)
dD1

da1

−D1]. (B.5)

In addition, from (28), we have:

∆1 = sm(1− α)(yI1 − yI2) + πm(1− α)(a1yI1 − ayI2) + πm (a1 − a)αyJ .

Differentiating leads to (using yI1 + yJ = y1):

d∆1

da1

= sm(1− α)(
dyI1
da1

− dyI2
da1

) + πm(1− α)(a1
dyI1
da1

− adyI2
da1

)

+πmα (a1 − a)
dyJ
da1

+ πm(1− α)yI1 + πmαyJ

= (sm + a1π
m)(1− α)

dyI1
da1

− (sm + aπm)(1− α)
dyI2
da1

+(a1 − a)πmα
dyJ
da1

+ πmy1. (B.6)
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Finally, differentiating (24) yields:

dD1

da1

=
1

6t

d∆1

da1

. (B.7)

In equilibrium, we must have d∆1/da1 = 0. It then follows from (B.3) and (B.7)

that
dyI2
da1

=
dD1

da1

= 0

and from (B.2) that (using D1 = D̂ = 1/2 and yI1 = ŷI)

dyI1
da1

= −1

2
fI

(
(1− a1)πm

2

)
πm.

Using these observations and evaluating (B.6) at equilibrium, where a1 = a, D1 = 1/2

and y1 = ŷ, yields:

0 =

[
ŷ − (sm + aπm)

1− α
2

fI

(
(1− a1)πm

2

)]
πm,

which, using (26) and (27), amounts to (B.1). It then follows from the analysis of part

1 that there is a unique symmetric equilibrium, where a = aC (α).

Furthermore, φC (a;α) is strictly increasing in α, implying that aC (α) is also

strictly increasing in α. Finally, for aC(1) = 1 > aS(1) and, for α < 1, aS(α) sat-

isfies the first-order condition σ̂′(a) = 0 which, re-arranging, can be expressed as

φS
(
aS;α

)
= 0, where:

φS (a;α) ≡
[
FI

(
(1− a)πm

2

)
+

α

1− α
FJ ((1− a) πm)

]
−
(
sm + aSπm

) [1

2
fI

(
(1− a)πm

2

)
+

α

1− α
fJ((1− a)πm)

]
.

The first bracketed term is strictly decreasing in a whereas the second one is weakly

increasing in a under Assumption 3; hence, φS (a;α) is also strictly decreasing in a in

the relevant range where sm + aπm > 0. In addition, we have:

φC (a;α)− φS (a;α) = (sm + aπm)
α

1− α
fJ((1− a)πm) ≥ 0,

where the inequality is strict for α > 0. It follows that aC (0) = aS (0) and aC (α) >

aS (α) for α > 0.
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Online Appendix

O-A Alternative pricing strategies

We show here that the insights of Section 3 carry over when platforms charge wholesale

prices (per consumer served) to app developers instead of ad valorem commissions, but

no longer do so when platforms rely instead on fixed fees (independent of the number

of consumers served).

O-A.1 Wholesale prices

We start with the case where platforms charge wholesale prices. The analysis is similar

to that exposed in Section 3, and we only sketch here the main steps.

In stage 2, when facing a wholesale price w, a developer sets

pm(w) ≡ arg max
p

(p− w) d(p),

which generates a profit πm(w) ≡ (pm(w)− w) d(pm(w)) for the developer, a revenue

ρm (w) ≡ wd(pm(w)) for the platform, and a surplus sm(w) ≡ s(pm(w)) for consumers.

Thus, if Pi sets a wholesale price wi, its profit is

Πi = (pi + ρm (wi) yi)D(pi − siyi, pj − sjyj) = (Pi + σi)D(Pi, Pj),

where the subsidy is now equal to

σi = [si + ρm (wi)] yi.

Let y∗(wi, wj) denote Pi’s app base at the end of stage 1, as a function of the

wholesale prices, and define:

σ∗(wi, wj) ≡ [sm(wi) + ρm (wi)] y
∗(wi, wj),

which satisfies

∂2σ
∗(wi, wj) = [sm(wi) + ρm (wi)] ∂2y

∗(wi, wj),
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and

P ∗(wi, wj) = P e(σ∗(wi, wj), σ
∗(wj, wi)),

D∗(wi, wj) = D(P ∗(wi, wj), P
∗(wj, wi)),

Π∗(wi, wj) = [P ∗(wi, wj) + σ∗(wi, wj)]D
∗(wi, wj),

r∗ (wi, wj) ≡ πm(wi)D
∗ (wi, wj) .

O-A.1.1 Benchmarks

For w1 = w2 = w, consumer surplus and social welfare are now respectively given by:

Ŝ (w) ≡
∫ +∞

P ∗(w,w)

2D (P, P ) dP and Ŵ (w) ≡ Ŝ (w) + Π̂D (w) + 2Π∗ (w,w)

where

Π̂D (w) ≡
∫
R3
+

πD (r∗ (w,w) ,k) dF̄ (k) .

We have:

Lemma O-A.1 (benchmarks – wholesale prices) Maximizing consumer surplus,

Ŝ (w), or platforms’ profit, Π̂P (w), amounts to maximizing platforms’ subsidy, σ̂ (w).

Maximizing social welfare requires a strictly lower wholesale price. Formally:

wW ≡ argmax
w

Ŵ (w) < wS ≡ argmax
w

Ŝ(w) = argmax
w

σ∗(w,w) = argmax
w

Π∗(w,w) .

Proof. Maximizing consumer surplus amounts again to minimizing the quality-

adjusted price, which from Assumption 1 (a) requires maximizing the subsidy; likewise,

from Assumption 1 (b), maximizing the profits of the platforms amounts to maximizing

the subsidy.

The individual and aggregate app profit, πD (r∗ (w,w) ,k) and Π̂D (w), both vary

like r∗ (w,w). Furthermore, slightly reducing w from wS strictly increases developers’

per consumer profit, πm (w), and has only a second-order effect on the (subsidy and,

thus, on the) consumer base D∗ (w,w). It follows that, starting from w = wS, a slight

reduction in w would increase r∗ (w,w) and, thus, the developers’ profit. The rest of

the proof follows the same steps as Lemma 2.

O-A.1.2 Platform competition

In what follows, we maintain the analogous of Assumption 2 for Π∗(wi, wj). We have:
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Proposition O-A.1 (platform competition – wholesale prices) Platform com-

petition yields higher (resp., lower) wholesale prices than those maximizing consumer

surplus whenever raising one wholesale price reduces (resp., increases) the rival’s app

base. Formally:

wC T wS if and only if ∂2y
∗ (wS, wS) S 0.

Proof. By construction, wS maximizes σ∗(w,w). Hence

∂1σ
∗(wS, wS) + ∂2σ

∗(wS, wS) = 0.

Therefore:

∂1Π∗(wS, wS) = ∂1Πe(σS, σS)∂1σ
∗(wS, wS) + ∂2Πe(σS, σS)∂2σ

∗(wS, wS)

= −
[
∂1Πe(σS, σS)− ∂2Πe(σS, σS)

]
∂2σ

∗(wS, wS)

= −
[
∂1Πe(σS, σS)− ∂2Πe(σS, σS)

] [
sm(wS) + ρm(wS)

]
∂2y

∗(wS, wS).

The remainder of the proof follows the same steps as the proof of Proposition 1.

The remainder of the analysis replicates that of Section 3.3. In particular, we still

have

∂2y
∗ (wS, wS) = DS + IS =

DS

1− AS
, (O-A.1)

with the caveat that the direct impact of the rival’s price on the revenue offered to

developers, equal to −πmDS in the case of commissions, becomes

dπm (w)

dw

∣∣∣∣
w=wS

DS = −dSDS,

where dS ≡ d(pm(wS)), and the indirect impact through the consumer bases, equal to

(1− a) πm∂hD
∗ in the case of commissions, becomes

πS∂hD
∗ (wS, wS) ,

where πS ≡ πm
(
wS
)
. As a result, the direct and indirect effects are given by:

DS = −dSDS∂2Y
(
rS, rS

)
, (O-A.2)

IS = πS
[
∂2D

∗ (wS, wS) ∂1Y
(
rS, rS

)
+ ∂1D

∗ (wS, wS) ∂2Y
(
rS, rS

)]
,

and the factor AS is now equal to

AS ≡ [∂1Y (·)− ∂2Y (·)] [∂1D(·)− ∂2D(·)] [∂1P
e(·)− ∂2P

e(·)]πS
(
sS + ρS

)
,
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where sS + ρS = s
(
pm
(
wS
))

+ ρm
(
wS
)

denotes the marginal impact that an increase

in app base has on a platform’s subsidy, and the stability of the price-setting game

still guarantees AS < 1. Building on this yields:

Proposition O-A.2 (cost externalities – wholesale prices) We have:

(i) In case of independent development decisions (i.e., when k = k1 + k2, with k1

and k2 i.i.d. according to F (·)), platform competition yields the wholesale prices

that maximize consumer surplus: wC = wS.

(ii) Under Assumption S: wC ≷ wS if and only if s ≷ 0.

Proof. Part (i) follows directly from Proposition O-A.1, (O-A.1), (O-A.2) and the

observation that, in the case of independent development decisions, Y (ri, rj) = F (ri)

and ∂2Y (·) = 0.

Part (ii). We have:

wC ≷ wS ⇐⇒ ∂2y
∗ (wS, wS) ≶ 0

⇐⇒ DS = −dSDS∂2Y
(
rS, rS

)
≶ 0

⇐⇒ ∂2Y
(
rS, rS

)
≷ 0,

where the first equivalence stems from Proposition O-A.1, the second one from (O-A.1)

and the third one from dSDS > 0. The conclusion follows from Lemma A.3.

O-A.2 Fixed fees

We now turn to the case where platforms charge fixed fees and show that the above

insights no longer hold. The main difference with the previous analyses is that these

fees no longer directly affect platforms’ subsidies (they only affect them indirectly,

through the impact on app bases), but still have a direct (separable) impact on plat-

forms’ profits. As a result, consumers’ and platforms’ interests no longer coincide,

even in the case of independent development decisions.

In stage 2, when facing a fixed fee ϕ, a developer sets

pm = arg max
p
pd(p)− ϕ,

as in the case of commissions. This now generates a profit πm−ϕ for the developer, a

revenue ϕ for the platform, and a surplus sm for consumers. Thus, if Pi sets a fee ϕi,

its profit is

Πi = piD(pi − smyi, pj − smyj) + ϕiyi = (Pi + σi)D(Pi, Pj) + ϕiyi,
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where the subsidy is now equal to

σi = smyi.

At the beginning of stage 2, ϕi and yi are both given. Hence, competition for consumers

leads again to Pi = P e (σi, σj); however, the resulting profit is now equal to

Πi = Πe (σi, σj) + ϕiyi.

Let y∗(ϕi, ϕj) denote Pi’s app base at the end of stage 1, as a function of the fees,

and define:

σ∗(ϕi, ϕj) ≡ smy∗(ϕi, ϕj), (O-A.3)

which satisfies

∂2σ
∗(ϕi, ϕj) = sm∂2y

∗(ϕi, ϕj). (O-A.4)

O-A.2.1 Consumers

As before, maximizing consumer surplus amounts to minimizing equilibrium prices,

which in turn amounts to maximizing platforms’ subsidies. Here, however, this boils

down to maximizing developers’ participation, which in turn amounts to maximizing

their revenue, πm−ϕ; hence, in the absence of any constraint on the fees, the surplus-

maximizing fee would be ϕS = −∞. Obviously, this cannot arise in equilibrium.

O-A.2.2 Competitive bottlenecks

As an alternative benchmark, following the competitive bottlenecks literature we now

consider the sum of platforms’ profits and consumer surplus, equal here to 2V (ϕ),

where:

V (ϕ) ≡ Πe (σ∗ (ϕ, ϕ) , σ∗ (ϕ, ϕ)) + ϕy∗ (ϕ, ϕ) +

∫ +∞

P e(σ∗(ϕ,ϕ),σ∗(ϕ,ϕ))

D (P, P ) dP.

Let ϕ = ϕV denote the fee that maximizes this joint payoff, and yV ≡ y∗
(
ϕV , ϕV

)
,

σV ≡ σ∗
(
ϕV , ϕV

)
, P V ≡ P e

(
σV , σV

)
, DV ≡ D

(
P V , P V

)
denote the resulting app

base, subsidy, consumer price and demand. The fee ϕV is characterized by the first-
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order condition:

0 = (∂1Πe + ∂2Πe)× (∂1σ
∗ + ∂2σ

∗) +
[
yV + ϕV × (∂1y

∗ + ∂2y
∗)
]

−DV × (∂1P
e + ∂2P

e)× (∂1σ
∗ + ∂2σ

∗)

=
[
∂1Πe + ∂2Πe −DV (∂1P

e + ∂2P
e)
]
sm (∂1y

∗ + ∂2y
∗) +

[
yV + ϕV (∂1y

∗ + ∂2y
∗)
]

=
{[
∂1Πe + ∂2Πe −DV (∂1P

e + ∂2P
e)
]
sm + ϕV

}
(∂1y

∗ + ∂2y
∗) + yV , (O-A.5)

where the second equality stems from (O-A.4) and, for i = 1, 2, ∂iΠ
e and ∂iP

e are

evaluated at σ1 = σ2 = σV , whereas ∂iy
∗ is evaluated at ϕ1 = ϕ2 = ϕV .

Using

Πe (σi, σj) = max
Pi
{(Pi + σi)D (Pi, P

e (σj, σi))} ,

we have:

∂1Πe = DV +
(
P V + σV

)
∂2D∂2P

e,

∂2Πe =
(
P V + σV

)
∂2D∂1P

e,

where ∂2D is evaluated at P1 = P2 = P V . Furthermore, the first-order condition of

the profit maximization with respect to Pi at stage 2 yields

DV +
(
P V + σV

)
∂1D = 0.

Hence, (O-A.5) can be expressed as:

0 =
{[
DV +

(
P V + σV

)
∂2D (∂2P

e + ∂1P
e)−DV (∂1P

e + ∂2P
e)
]
sm + ϕV

}
(∂1y

∗ + ∂2y
∗) + yV

=
{[
DV +

(
P V + σV

)
(∂1D + ∂2D) (∂1P

e + ∂2P
e)
]
sm + ϕV

}
(∂1y

∗ + ∂2y
∗) + yV . (O-A.6)

O-A.2.3 Platform competition

In a symmetric equilibrium, each Pi chooses ϕi = ϕC to maximize:

Πi = Πe(σ∗(ϕi, ϕ
C), σ∗(ϕC , ϕi)) + ϕiy

∗(ϕi, ϕ
C)

= max
Pi

[
Pi + σ∗(ϕi, ϕ

C)
]
D(Pi, P

e(σ∗(ϕC , ϕi), σ
∗(ϕi, ϕ

C))) + ϕiy
∗(ϕi, ϕ

C).

Let yC ≡ y∗
(
ϕC , ϕC

)
, σC ≡ σ∗

(
ϕC , ϕC

)
, PC ≡ P e

(
σC , σC

)
, DC ≡ D

(
PC , PC

)
denote the resulting app base, subsidy, consumer price and demand. The fee ϕC is

characterized by the first-order condition, which, using the envelope theorem, can be
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expressed as:

0 = ∂1σ
∗ ×DC +

(
PC + σC

)
× ∂2D × (∂1P

e∂2σ
∗ + ∂2P

e∂1σ
∗) +

(
yC + ϕC × ∂1y

∗)
= DCsm∂1y

∗ +
(
PC+σC

)
∂2Ds

m(∂1P
e∂2y

∗+∂2P
e∂1y

∗) + yC+ϕC∂1y
∗ (O-A.7)

where, for i = 1, 2, ∂iP
e is evaluated at σ1 = σ2 = σC , ∂iD is evaluated at P1 = P2 =

PC , whereas ∂iy
∗ is evaluated at ϕ1 = ϕ2 = ϕC .

At first glance, the first-order conditions (O-A.6) and (O-A.7) appear unlikely to

coincide, suggesting that the insight obtained by Armstrong (2006) for the case of

simultaneous competition on both sides, does not carry over to our sequential compe-

tition setting. To explore this further, we now study an illustrative example.

O-A.2.4 Illustration

As in Armstrong (2006), we focus on the case of independent development decisions

and, for illustrative purposes, consider a Hotelling specification for consumer demand.

Competition for consumers As in Section 4, we consider the following consumer

demand:

D (Pi, Pj) =
1

2
− Pi − Pj

2t
.

From Lemma 4, in stage 2 we have Pi = PH (σi, σj) and Πi = ΠH (σi, σj) + ϕiyi,

where:

PH (σi, σj) ≡ t− 2σi + σj
3

and ΠH (σi, σj) ≡
t

2
(1 +

σi − σj
3t

)2.

In particular, in any symmetric equilibrium ϕ1 = ϕ2 = ϕC with associated app base

yC and subsidy σC , the price, demand and profit are respectively:

PC = t− σC , DC =
1

2
, and ΠC =

t

2
+ ϕCyC .

Competition for apps As in Section 3.3.2 on independent development decisions,

we assume that developers face platform-specific costs k1 and k2 (together with k =

k1+k2), symmetrically and independently distributed across developers, with marginal

c.d.f. F (·) and density f(·); we further assume that the (inverse reversed) hazard rate

h (k) =
F (k)

f (k)

is weakly increasing.
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In stage 1, in response to given fees (ϕ1, ϕ2) and expected consumer bases (D1, D2),

developers’ decisions lead to app bases (y1, y2) satisfying, for i 6= j ∈ {1, 2}:

yi = F (πmDi − ϕi).

To go further, from now on we focus on the case where platforms are highly differ-

entiated (i.e., t→ +∞). We then have, up to O (1/t):

Di ' DC =
1

2
and yi ' F

(
πm

2
− ϕi

)
,

implying:

∂1y
∗ ' −f

(
πm

2
− ϕi

)
and ∂2y

∗ ' 0.

The condition (O-A.6), characterizing the fee that maximizes the joint payoff of the

platforms and their consumers, thus boils down to (noting that ∂1D + ∂2D = 0):

0 =
(
DV sm + ϕV

)
(∂1y

∗ + ∂2y
∗) + yV

=

(
sm

2
+ ϕV

)[
−f
(
πm

2
− ϕV

)
+ 0

]
+ F

(
πm

2
− ϕV

)
= f

(
πm

2
− ϕV

)[
h

(
πm

2
− ϕV

)
−
(
sm

2
+ ϕV

)]
.

The monotonicity of the hazard rate h (·) then ensures that ϕ = ϕV is the unique

solution to ΦV (ϕ) = 0, where

ΦV (ϕ) ≡ h

(
πm

2
− ϕ

)
−
(
sm

2
+ ϕ

)
is strictly decreasing in ϕ.

By contrast, the equilibrium condition (O-A.7) amounts to:

0 =
{[
DC +

(
PC + σC

)
∂2D∂2P

e
]
sm + ϕC

}
∂1y

∗ +
(
PC + σC

)
∂2D∂1P

esm∂2y
∗ + yC

=

{[
1

2
+ t× 1

2t
×
(
−1

3

)]
sm + ϕC

}(
−f
(
πm

2
− ϕC

))
+ F

(
πm

2
− ϕC

)
= f

(
πm

2
− ϕC

)[
h

(
πm

2
− ϕC

)
−
(
sm

3
+ ϕC

)]
.

It follows that ϕ = ϕC is the unique solution to ΦC (ϕ) = 0, where

ΦC (ϕ) ≡ h

(
πm

2
− ϕ

)
−
(
sm

3
+ ϕ

)
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is also strictly decreasing in ϕ. Furthermore:

ΦC (ϕ)− ΦV (ϕ) =
sm

6
> 0,

which, together with the monotonicity of ΦC (·) and ΦV (·), implies:

ϕC > ϕV .

For instance, when costs are uniformly distributed over [0, 1] (i.e., F (k) = k), we have:

ϕC =
3πm − 2sm

12
> ϕV =

πm − sm

4
.

Hence, the result obtained by Armstrong (2006) for the case of (independent develop-

ment decisions, fixed fees and) simultaneous competition on both sides, does not hold

in our sequential competition setting.

O-B Extensions

O-B.1 Multiple platforms

O-B.1.1 Proof of Lemma 6

Platforms’ profits are strictly concave in their own quality-adjusted prices; the equilib-

rium is therefore characterized by the first-order conditions, given by, for i = 1, . . . , n:

0 =
∂Π̄S

n

(
Pi, P̄i;σi

)
∂Pi

= D̄S
n

(
Pi, P̄i

)
+ (Pi + σi)

∂D̄S
n

(
Pi, P̄i

)
∂Pi

=
1

n
− Pi − P̄i

nt
− Pi + σi

nt
,

or:

0 =
t

n
−

(2n− 1)Pi −
∑

j
Pj

n (n− 1)
− σi
n
. (O-B.1)

Summing these conditions for i = 1, . . . , n and re-arranging yields:∑
j

Pj = nt−
∑
j

σj.

Combining this with (O-B.1) leads to:

Pi = t− nσi + (n− 1) σ̄i
2n− 1

= P S
n (σi, σ̄i) ,
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and, using ∆i = σi − σ̄i:

Di =
1

n
− Pi − P̄i

nt
=

1

nt

(
t+

n− 1

2n− 1
∆i

)
= DS

n (∆i)

Πi = (Pi + σi)Di =
1

nt

(
t+

n− 1

2n− 1
∆i

)2

= ΠS
n (∆i) .

O-B.1.2 Proof of Lemma 7

Consumer surplus and social welfare are respectively given by:

ŜSn (a) ≡ u0 −
t

4
− P̂ S

n (a) = u0 −
5t

4
+ σ̂Sn (a) ,

Ŵ S
n (a) ≡ ŜSn (a) + nΠ̂S

n (a) + Π̂S
D (a, n) = u0 −

t

4
+ (sm + πm) ŷSn (a)− K̂S

n (a) .

We thus have:

dŴ S
n

da
(a) = (sm + πm)

dŷSn
da
− dK̂S

n

da
(a)

= (sm + πm)

[
−αfJ ((1− a) πm) πm − (1− α) fI

(
(1− a)

πm

n

)
πm

n

]
+α (1− a) πmfJ((1− a) πm)πm + (1− α)n× (1− a)

πm

n
fI((1− a)

πm

n
)
πm

n

= − (sm + aπm)

[
αfJ((1− a) πm)πm + (1− α) fI((1− a)

πm

n
)
πm

n

]
,

and:

d2Ŵ S
n

da2
(a) = −πm

[
αfJ((1− a) πm)πm + (1− α) fI((1− a)

πm

n
)
πm

n

]
+ (sm + aπm)

[
αf ′J((1− a) πm) (πm)2 + (1− α) f ′I((1− a)

πm

n
)

(
πm

n

)2
]

< 0,

where the inequality stems from Assumption 3. It follows that the welfare-maximizing

commission is uniquely characterized by the first-order condition, leading to aW =

−sm/πm, regardless of n, α and t.

Maximizing consumer surplus requires maximizing platforms’ subsidy, σ̂Sn (a) =

(sm + aπm) ŷSn (a), where:

ŷSn (a) = αFJ ((1− a)πm) + (1− α)FI

(
(1− a)πm

n

)
. (O-B.2)

It follows that ŷSn (a) and σ̂Sn (a) are both independent of t; hence, the commission that

63



maximizes consumer surplus is also independent of t. Furthermore, as the optimal

value, aSn (α), maximizes σ̂Sn (a), we have:

σ̂Sn
(
aSn (α)

)
≥ σ̂Sn (0) = sm

[
αFJ (πm) + (1− α)FI

(
πm

n

)]
> 0.

It follows that sm+aSn (α) πm > 0 and ŷSn
(
aSn (α)

)
> 0, implying that aSn (α) lies strictly

between aW and 1.

If α = 1, then

σ̂Sn (a) = σ̂J (a) ≡ (sm + aπm) ŷJ (a) = (sm + aπm)FJ ((1− a)πm) ,

which, in the relevant range where sm + aπm > 0, satisfies:

σ̂′J (a) = πmŷJ (a) + (sm + aπm) ŷ′J (a) = πm [FJ ((1− a) πm)− (sm + aπm) fJ ((1− a) πm)] ,

σ̂′′J (a) = − (πm)2 [2fJ ((1− a) πm)− (sm + aπm) f ′J ((1− a) πm)] < 0,

where the inequality stems from Assumption 3. Hence, regardless of n, aSn (1) = aSJ ,

where aSJ ∈
(
aW , 1

)
is the unique solution in a to:

sm + aπm =
FJ ((1− a) πm)

fJ ((1− a) πm)
.

For α < 1, as n goes to infinity, independent development tends to disappear, and

so in the limit the subsidy is given by ασ̂J (a). It follows that, as n goes to infinity,

aSn (α) tends to aSJ
(
∈
(
aW , 1

))
.

Example 2 (uniform distribution) In the particular case where development costs

are uniformly distributed over [0, 1] (i.e., FJ(k) = FI(k) = k), we have:

ŷSn (a) = α (1− a) πm + (1− α) (1− a)
πm

n
= (1− a) [1 + (n− 1)α]

πm

n
,

and:

dσ̂Sn
da

(a) = πmŷSn (a) + (sm + aπm)
dŷSn
da

(a) = [1 + (n− 1)α]
πm

n
(πm − sm − 2πma) ,

leading to:

aSn =
πm − sm

2πm
(∈ (aW ,

1

2
)),

regardless of n, α and t.
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O-B.1.3 Proof of Proposition 5

We first establish existence and uniqueness for t large enough (part 1), before studying

the properties of symmetric equilibria (part 2).

Part 1. We first establish uniqueness, before turning to existence. Let I ≡ {1, . . . , n}
denote the set of platforms, a = (a1, . . . , an) the commissions set in stage 1a. In the

continuation equilibrium, in stage 2 platforms’ consumer bases are characterized by

(29). Hence, as t → +∞, each platform’s consumer base satisfies Di ' D∞ up to

O (1/t), where:

D∞ =
1

n
.

Using (21) and (30), the platforms’ app bases satisfy yIi ' y∞I (ai) and yJ ' y∞J (a)

up to O (1/t), where:

y∞I (ai) ≡ FI((1− ai)
πm

n
),

y∞J (a) ≡ FJ(
∑
h∈I

(1− ah)
πm

n
).

Pi’s subsidy therefore satisfies, up to O (1/t):

σi ' σ∞n (ai, a−i) ≡ α (sm + aiπ
m) y∞J (ai, a−i) + (1− α)ϕ (ai) ,

where

ϕ (a) ≡ (sm + aπm)FI

(
(1− a) πm

n

)
.

As noted in the text, in stage 1a each Pi seeks to maximize its subsidy advantage,

equal to ∆i = σi − σ̄i ' ∆∞n (ai, a−i), up to O (1/t), where:

∆∞n (ai, a−i) ≡ (ai − āi) πmαy∞J (ai, a−i) + (1− α)

ϕ (ai)−
1

n− 1

∑
h∈I\{i}

ϕ (ah)

 ,
where

āi ≡
1

n− 1

∑
h∈I\{i}

ah

denotes the average of Pi’s rivals’ commissions.

In what follows, we consider the limit game Γ∞n in which each Pi sets ai so as

to maximize ∆∞n (ai, a−i). We show that there exists a unique equilibrium, in which

platforms’ best-responses are moreover uniquely defined. By continuity, this establishes

existence and uniqueness of the competitive equilibrium for t large enough.

We first note that, in any equilibrium of game Γ∞n , subsidies are non-negative:
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Claim O-B.1 (non-negative subsidies) In any equilibrium of game Γ∞n , all com-

missions are strictly higher than aW .

Proof. Consider a candidate equilibrium of game Γ∞ yielding commissions a =

(a1, . . . , an), app bases y ≡ αy∞J (a) and {yi ≡ (1− α) y∞I (ai)}i∈I , and subsidies {σi ≡
(sm + aiπ

m) (y + yi)}i∈I . Without loss of generality, suppose that ai = minh∈I {ah},
implying yi ≥ yh for any h 6= i, and let ∆ih ≡ σi − σh denote Pi’s subsidy advantage

compared to a rival Ph; finally, following a deviation to a′i 6= ai, let y′ ≡ y∞J (a′i, a−i),

y′i ≡ y∞I (a′i), σ
′
i ≡ (sm + a′iπ

m) (y′ + y′i), {σ′h ≡ (sm + ahπ
m) (y′ + y′h)}h∈I\{i} and ∆′ih ≡

σ′i − σ′h denote the resulting app bases, subsidies and subsidy advantages. We have:

• If ai < aW , then σi < 0 (as sm + aiπ
m < 0 and y + yi ≥ αFJ

((
1− aW

)
πm/n

)
+

(1− α)FI
((

1− aW
)
πm/n

)
> 0); consider now a deviation to a′i = aW , implying

σ′i = 0 (as sm + a′iπ
m = 0), y′ ≤ y and y′i ≤ yi. We have:

– for every j 6= i for which aj < aW , σi ≤ σj (as sm + aiπ
m ≤ sm + ajπ

m < 0

and yi ≥ yj) and σ′j < 0 = σ′i; hence, ∆ij ≤ 0 < −σ′j = ∆′ij, implying that

the deviation strictly increases ∆ij;

– for every h 6= i for which ah = aW , σh = σ′h = 0; hence, ∆ih = σi− 0 < 0 =

∆′ih, implying that the deviation strictly increases ∆ih as well;

– finally, for every k 6= i for which ak > aW , σk ≥ σ′k ≥ 0 (as sm + akπ
m > 0

and y ≥ y′ ≥ 0); hence, ∆i = σi − σk < σ′i − σ′k = ∆′i (as σi < 0 = σ′i and

σk ≥ σ′k), implying that the deviation is once more strictly profitable.

It follows that the deviation strictly increases ∆i = (
∑

h∈I\{i}

∆ih)/ (n− 1).

• If instead ai = aW , then σi = 0 (as sm+aiπ
m = 0) and σh ≥ 0, implying ∆ih ≤ 0

for every h ∈ I\ {i} (as sm + ahπ
m ≥ 0 and y + yh ≥ 0); three cases can be

distinguished:

– If α = 0 and aj = 1 for every j 6= i, then any such j obtains ∆j = 0 (as

y = yj = 0) and could profitably deviate to, say, a′j = 0, so as to obtain

∆′j = σ′j = smy∞I (0) > 0 = ∆j.

– If instead ah = aW for every h ∈ I, then σi = σh = ∆i = 0 (as sm +

aiπ
m = sm + ahπ

m = 0); a deviation to, say a′i = 0 would lead to σ′j =

0 (as sm + ajπ
m = 0) for every j 6= i and ∆′i = σ′i = sm (y′ + y′i) =

sm [αy∞J (0, a−i) + (1− α) y∞I (0)] > 0 = ∆i, and would therefore be strictly

profitable.
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– In all other cases, σj > 0 for some j 6= i, and so ∆i ≤ ∆ij/ (n− 1) =

−σj/ (n− 1) < 0; a deviation to a′i = āi would lead to

∆′i = (āi − āi) πmy′ + (1− α)[ϕ (āi)−
1

n− 1

∑
h∈I\{i}

ϕ (ah)],

where

ϕ′ (a) ≡ πmFI

(
(1− a) πm

n

)
− (sm + aπm) fI

(
(1− a) πm

n

)
πm

n
,

ϕ′′ (a) ≡ −2πmfI

(
(1− a) πm

n

)
πm

n
+ (sm + aπm) f ′I

(
(1− a) πm

n

)(
πm

n

)2

.

It follows from Assumption 3 that

ϕ′′ (a) < 0 (O-B.3)

in the range a ≥ aW . Hence, from Jensen’s inequality, ∆′i ≥ 0 (> ∆i),

implying that the deviation would be strictly profitable.

It follows that, in any equilibrium of game Γ∞n , alll commissions are strictly higher

than aW .

Any commission a > 1 discourages app development and is formally equivalent to

a′ = 1. Hence, it follows from Claim O-B.1 that, without loss of generality we can

restrict attention to commissions lying in the range (aW , 1]. Equilibrium commissions

must therefore satisfy the first-order conditions, for i ∈ I:{
d∞n (ai, a−i) ≥ 0 if ai = 1,

d∞n (ai, a−i) = 0 otherwise,

where:

d∞n (ai, a−i) ≡
∂∆∞n (ai, a−i)

∂ai

= πmαy∞J (ai, a−i) + (ai − āi) πmα
∂y∞J (ai, a−i)

∂ai
+ (1− α)ϕ′ (ai) .

Next, we show that any equilibrium must be symmetric:

Claim O-B.2 (symmetry) In any equilibrium of game Γ∞n , commissions are sym-

metric.
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Proof. Let ai = minh∈I {ah} and aj = minh∈I\{i} {ah}, which from the above analysis

satisfyaW < ai < aj ≤ 1; we then have (using ∂y∞J /∂ai = ∂y∞J /∂aj = −fJ (·) πm/n
and ai − āi − (aj − āj) = n (ai − aj) / (n− 1)):

d∞n (ai, a−i)−d∞n (aj, a−j) = α (ai − aj)
nπm

n− 1

∂y∞J (ai, a−i)

∂ai
+ (1−α) [ϕ′ (ai)− ϕ′ (aj)] .

In the left-hand side of the above equation, both terms are weakly positive – as ai < aj

and ∂y∞J /∂ai < 0, for the first term, and (from (O-B.3)) ϕ′ (ai) is strictly decreasing,

for the second term – and at least one of them is strictly positive – the first one if

α > 0, and the second one if α < 1. Hence, d∞n (ai, a−i) > d∞n (aj, a−j), which in turn,

implies that the commissions (ai, aj, a−i−j) cannot constitute an equilibrium: if aj < 1,

we should have d∞n (ai, a−i) = d∞n (aj, a−j) = 0, a contradiction; if instead aj = 1, we

should have d∞n (ai, a−i) = 0 ≤ d∞n (aj, a−j), another contradiction.

Focusing on equilibria in which all platforms charge the same commission a (im-

plying y∞J (a) = ŷ∞J (a) ≡ FJ ((1− a)πm)); the first-order derivative then boils down

to:

d̂∞n (a) ≡ πmαŷ∞J (a) + (1− α)ϕ′ (a) ,

which is strictly decreasing in a (as dŷ∞J /da = −fJ ((1− a)πm) πm < 0 and ϕ′′ (a) <

0). For α = 1, it reduces further to FJ ((1− a) πm) = 0, implying aCn (α) = 1. For

α < 1, it satisfies

d̂∞n (1) = (1− α)ϕ′ (1) = − (1− α) (sm + aπm) fI (0)
πm

n
< 0,

d̂∞n
(
aW
)

= πm
[
αFJ (sm + πm) + (1− α)FI

(
sm + πm

n

)]
> 0.

It follows that there is a unique candidate symmetric equilibrium, aCn (α), which more-

over satisfies aCn (1) = 1 and aCn (α) ∈
(
aW , 1

)
otherwise.

To establish existence, we show that the function

ψ (a) ≡ ∆∞n (ai, a−i)|ai=a,aj=aCn (α) for j 6=i

=
(
a− aCn (α)

)
πmαFJ

(
[n− a− (n− 1) aCn (α)]

πm

n

)
+(1− α)

[
ϕ (a)− ϕ

(
aCn (α)

)]
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is indeed maximal for a = aCn (α). We first note that:

ψ′ (a) = πmαFJ

(
[n− a− (n− 1) aCn (α)]

πm

n

)
−
(
a− aCn (α)

)
πmαfJ

(
[n− a− (n− 1) aCn (α)]

πm

n

)
πm

n
+ (1− α)ϕ′ (a) ,

which by construction satisfies ψ′
(
aCn (α)

)
= 0, and

ψ′′ (a) = −2πmαfJ

(
[n− a− (n− 1) aCn (α)]

πm

n

)
πm

n

+
(
a− aCn (α)

)
πmαf ′J

(
[n− a− (n− 1) aCn (α)]

πm

n

)(
πm

n

)2

+ (1− α)ϕ′′ (a)

For a ≥ aCn (α), ψ′′ (a) < 0 as fJ (·) > 0 ≥ f ′J (·), ϕ′′ (a) < 0 and α ∈ [0, 1]. Hence,

in the range a ≥ aCn (α), ψ (a) is maximal for a = aCn (α).

Furthermore, for a ≤ aCn (α), we have ψ (a) ≤ ψ̂ (a), where (replacing a with aCn (α)

in the expression of y∞J (·)):

ψ̂ (a) ≡
[
a− aCn (α)

]
πmαFJ

([
1− aCn (α)

]
πm
)

+ (1− α)
[
ϕ (a)− ϕ

(
aCn (α)

)]
.

By construction, ψ̂
(
aCn (α)

)
= ψ

(
aCn (α)

)
= 0 and ψ̂

′ (
aCn (α)

)
= ψ′

(
aCn (α)

)
= 0.

Furthermore:

ψ̂
′′

(a) = (1− α)ϕ′′ (a) ≤ 0

where the inequality stems from ϕ′′ (a) < 0 and α ≤ 1. It follows that, in the range

a ≤ aCn (α), ψ (a) is again maximal for a = aCn (α).

Part 2. We now focus on symmetric candidate equilibria, in which:

• all platforms set the same commission a and charge the same price p to con-

sumers;

• following a deviation by one platform, all other platforms keep charging a sym-

metric price, and thus share evenly their aggregate consumer base.

By construction, in equilibrium each platform obtains a share 1/n of consumers

and an app base equal to ŷSn (a), given by (O-B.2). Consider now a deviation by P1

to some a1 6= a, say, and let D1 denote the resulting consumer base for that platform.

The app base of each Pi is then given by yi = αyJ + (1− α) yIi, where (using ai = a
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and Di = (1−D1) / (n− 1) for i = 2, ..., n):

yI1 = FI ((1− a1) πmD1) ,

yI2 = · · · = yIn = FI

(
(1− a) πm

1−D1

n− 1

)
,

yJ = FJ ((1− a) πm + (a− a1) πmD1) .

Furthermore, from (29):

D1 ≡
1

n
+

n− 1

2n− 1

∆1

nt
,

where (using yIi = yIn for i = 2, ..., n− 1):

∆1 = (sm + a1π
m) [αyJ + (1− α) yI1]− (sm + aπm) [αyJ + (1− α) yIn]

= (1− α) [(sm + a1π
m) yI1 − (sm + aπm) yIn] + α (a1 − a) πmyJ .

Differentiating leads to:

dyI1
da1

= fI ((1− a1)πmD1) πm[(1− a1)
dD1

da1

−D1], (O-B.4)

dyIn
da1

= −fI
(

(1− a)πm
1−D1

n− 1

)
(1− a)

πm

n− 1

dD1

da1

, (O-B.5)

dD1

da1

=
n− 1

(2n− 1)nt

d∆1

da1

, (O-B.6)

and (using D1 = 1/n and y1 = ŷSn (a) for a1 = a):

d∆1

da1

∣∣∣∣
a1=a

= ŷSn (a) πm + (1− α) (sm + aπm)

[
dyI1
da1

∣∣∣∣
a1=a

− dyIn
da1

∣∣∣∣
a1=a

]
. (O-B.7)

If α = 1, (O-B.7) boils down to:

d∆1

da1

∣∣∣∣
a1=a

= ŷS (a) πm ≥ 0,

with a strict inequality for a < 1. It follows that the only equilibrium is a = 1.

If α < 1, it follows from (O-B.2), (O-B.4), (O-B.5) and (O-B.7) that (using D1 =

1/n for a1 = a):

d∆1

da1

∣∣∣∣
a1=a=1

= − (1− α) (sm + aπm) fI (0)
πm

n
< 0,

implying that, starting from a candidate equilibrium in which a = 1, each platform

would have an incentive to lower its commission. Hence, in equilibrium, a < 1. We
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must therefore have
d∆1

da1

∣∣∣∣
a1=a

= 0.

It then follows from (O-B.4) – (O-B.6) that:

dyIn
da1

∣∣∣∣
a1=a

=
dD1

da1

∣∣∣∣
a1=a

= 0,

dyI1
da1

∣∣∣∣
a1=a

= −fI
(

(1− a) πm

n

)
πm

n
.

Plugging in these expressions and (O-B.2) into (O-B.7), and dividing by (1− α) πm,

then yields (where the superscript S refers to Spokes):

0 = φSC (a;α, n) ≡ α

1− α
FJ ((1− a)πm)+FI

(
(1− a)πm

n

)
−s

m + aπm

n
fI

(
(1− a)πm

n

)
,

where φSC (·) satisfies:

φSC
(
aW ;α

)
=

α

1− α
FJ (sm + πm) + FI

(
sm + πm

n

)
> 0,

φSC (1;α) = −s
m + πm

n
fI (0) < 0,

and

∂φSC
∂a

(a;α, n) ≡ − α

1− α
fJ ((1− a)πm) πm − 2fI

(
(1− a)πm

n

)
πm

n

+
sm + aπm

n
f ′I

(
(1− a)πm

n

)
πm

n
< 0,

where the inequalities stem from Assumption 3. Furthermore, φSC (a;α, n) is strictly

increasing in α and, for any a < 1, tends to infinity as α tends to 1. It follows that there

is a unique symmetric equilibrium, a = aCn (α), where aCn (α) ∈
(
aW , 1

)
, is increasing

in α, and tends to 1 as α does so. Finally, as n goes to infinity, we have:

lim
n−→+∞

φSC (a;α, n) ≡ α

1− α
FJ ((1− a)πm) ,

implying that aCn (α) ∈
(
aW , 1

)
tends again to 1 as n goes to infinity.

To conclude the proof, we now compare aCn (α) to aSn (α). For α = 1, we have
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aSn (α) < 1 = aCn (α). For α < 1, aSn (α) is characterized by the optimality condition:

0 =
dσ̂Sn
da

(a) = πmŷSn (a) + (sm + aπm)
dŷSn
da

(a)

= πm
[
αFJ ((1− a)πm) + (1− α)FI

(
(1− a)πm

n

)]
− (sm + aπm)

[
αfJ ((1− a)πm) πm + (1− α) fI

(
(1− a)πm

n

)
πm

n

]
= (1− α)πm

{
φSC (a;α, n)− α

1− α
(sm + aπm) fJ ((1− a)πm)

}
.

It follows that

φSC
(
aSn (α) ;α, n

)
=

α

1− α
(
sm + aSn (α) πm

)
fJ
(
(1− aSn (α))πm

)
> 0,

where the inequality stems from aSn (α) > aW . Together with the fact that φSC (a;α, n)

is decreasing in a, this in turn implies that aSn (α) < aCn (α).

O-B.2 Sequential Development

Let ri denote the revenue offered by Pi to successful apps and ρi ≡ [λ+ (1− λ)η] ri

the resulting expected app revenue. In equilibrium, we have a1 = a2 = aC , r1 = r2 =

rC =
(
1− aC

)
πm/2 and ρ1 = ρ2 = ρC = [λ+ (1− λ)η] rC , and development and

porting decisions are as illustrated by Figure 2.

To assess the impact of a platform’s commission on its rival’s app base, suppose

that, starting from the equilibrium commissions, P1 slightly deviates and raises its

commission by da1 > 0. By construction, a1 = aC maximizes P1’s profit, given

a2 = aC ; in the Hotelling setting, this means that a1 = aC maximizes P1’s market

share on the consumer side; it follows that the deviation has only a second-order

effect on platforms’ consumer bases. We can thus focus on the impact of da1 on the

platforms’ app base through its direct impact on the revenues offered by the platforms

– namely, r1 is reduced by dr1 = πmda1/2, whereas r2 remains at its equilibrium value,

rC ≡ aCπm/2.

The numbers of apps in the first and second groups are respectively

yS ≡ F
(
ρC
) [

1− F
(
r̂C
)]

and yM ≡
∫ ρ̂C

k

F (k) dF (k) +

∫ r̂C

ρ̂C
F
(
φC (k)

)
dF (k) ,

where

ρ̂C ≡ ρC + λrC

1 + λδ
and r̂C ≡ rC

δ
.
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The total number of apps available on each platform, weighted by their popularity,

is then equal to (noting that a proportion λ of the yM potentially multihoming apps

developed on the rival platform are ported):

yC ≡ [λ+ (1− λ)η]
(
yS + yM

)
+ λyM .

Suppose now that P1 raises its commission by da1 > 0, thus reducing r1 by dr =

da1π
m/2 and ρ1 by dρ = [λ+ (1− λ)η] dr, leaving r2 and ρ2 unchanged: r2 = rC and

ρ2 = ρC . This induces five changes in the app bases, as illustrated by Figure 5:

a

b

d

c

e

(𝑘𝑘, 𝑘𝑘)

�̂�𝑟𝐶𝐶

𝜌𝜌𝐶𝐶

𝜌𝜌𝐶𝐶
𝑘𝑘1

𝑘𝑘2

�̂�𝑟𝐶𝐶

𝑘𝑘2 = 𝜙𝜙𝐶𝐶(𝑘𝑘1)

𝑘𝑘1 = 𝜙𝜙𝐶𝐶  (𝑘𝑘2)

Figure 5: Impact of platform 1’s commission on development and porting decisions.

a. developers with

k1 ∈
(
r̂C − dr

δ
, r̂C
)

and k2 < ρC ,

initially developing their apps for P2 and porting it in case of success, keep

developing their apps but no longer port them;

b. developers with

k1 ∈
(
ρ̂C , r̂C

)
and k2 ∈

(
φC (k1)− λdr, φC (k1)

)
,

initially developing their apps for P2 and porting it in case of success, drop out;
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c. developers with

k2 ∈
(
ρ̂C , r̂C

)
and k1 ∈

(
φC (k2)− dρ, φC (k2)

)
,

initially developing their apps for P1 and porting it in case of success, drop out

as well;

d. developers with52

k1 ∈
(
k, ρ̂C

)
and k2 ∈

(
k1, k1 +

(1− λ) η

1− λδ
dr

)
,

switch from P1 to P2 as development platform (and keep porting their apps in

case of success);

e. finally, developers with

k2 ≤
(
r̂C , k̄

)
and k1 ∈

(
ρC − dρ, ρC

)
,

initially developing their apps solely for P1, drop out.

The changes mentioned in a and e have no impact on P2’s app base: developers in

a keep developing their apps for P2, and those in e are never present on P2 anyway.

Any change mentioned in b reduces instead P2’s app base by a factor λ+(1−λ)η, and

any change listed in c reduces it by a factor λ (as these apps are ported onto P2 only

when successful). By contrast, any change mentioned in d increases P2’s app base by

a factor [λ+ (1− λ)η] − λ = (1 − λ)η (as these apps are now first developed on P2,

rather than being ported on P2 if successful). The overall impact on P2’s app base is

equal to:

dy2 = − [λ+ (1− λ)η]

∫ r̂C

ρ̂C
f
(
φC (k1)

)
λdrdF (k1)− λ

∫ r̂C

ρ̂C
f
(
φC (k2)

)
dρdF (k2)

+ (1− λ) η

∫ ρ̂C

k

f (k1)
(1− λ) η

1− λδ
drdF (k1) .

It follows that raising P1’s commission reduces the weighted number of apps available

52Conditional on porting the app if successful, a developer is indifferent between developing first
for one or the other platform if

ρ1 + λr2 − k1 − λδk2 = ρ2 + λr1 − k2 − λδk1,

which amounts to k2 − k1 = (dρ− λdr) / (1− λδ) = (1− λ) η/ (1− λδ).
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on P2 if and only if:

(1− λδ) 2λ
λ+ (1− λ)η

(1− λ)2 η2
>

∫ ρ̂C
k

f 2 (k) dk∫ r̂C
ρ̂C
f
(
φC (k)

)
f (k) dk

,

where the left-hand side is decreasing in η and tends to infinity as η tends to 0. It

follows that the condition holds whenever the revenue generated by unsuccessful apps

is small enough (i.e., η low enough).53

53This assumes that app development is not choked off (i.e., ρ̂C = [2λ+ (1− λ) η] rC/ (1 + λδ) >
(k >) 0), implying rC > 0 and

r̂C − ρ̂C =
rC

δ
− 2λ+ (1− λ) η

1 + λδ
rC =

1− [λ+ (1− λ) η] δ

δ (1 + λδ)
rC > 0.

If app development is chocked off, then trivially aC > aS .
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