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Abstract

Firms increasingly leverage external entities’ data capabilities to unlock improvements in their
offerings, but measuring the impact of such capabilities is challenging. Collaborating with the
search team at a technology company, we analyzed a large-scale field experiment where we
randomized access to an external, leading search engine’s autocomplete API for more than 2
million users over 108 days. We measure the causal effects of removing API access on two
performance metrics of the focal company’s search product: (a) clickthrough rate (CTR) on
search suggestions and (2) CTR on the Search Engine Results Page. We find that, on average,
compared to the baseline with API access, removing API access reduces the search-suggestion
CTR by 4.6%. Further, exploiting the experimental variation, we use an instrumental variables
approach to establish that a 10% increase (decrease) in CTR on search suggestions leads to a
1.85% increase (decrease) in CTR on top-slot search results. However, the negative effect of
removing API access becomes less negative over time with the effect magnitude in the longer
term being half what we would have obtained with a short-term experiment. We provide
suggestive mechanism evidence of the longer-term effect: the focal company’s reliance on the
leading search engine’s data capability tapers off the accumulation of internal data and then
limits the improvement of its autocomplete predictions. This research informs managers of a
critical trade-off in leveraging external data capabilities and sheds light on regulations such as
the Digital Markets Act that mandate data sharing by large digital platforms.
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1 Introduction

Large online firms collect an abundance of data to build their data-enabled capabilities, enhance

their offerings, and shore up revenues (Duranton et al., 2021; Sun et al., 2024). For example, leading

search engines devote significant resources to the development of query autocomplete (Cai et al.,

2016), which generates relevant search suggestions in response to search queries before users reach

the search engine results page (SERP) (Sullivan, 2018; Gulli, 2013). Increasingly, smaller players use

Application Programming Interfaces (APIs) to gain access to the market leader’s data capabilities1

to unlock improvements in their offerings (Benzell et al., 2023; Xue et al., 2019; Li and Kettinger,

2021). In the context of search, Google Autocomplete API enables publishers and developers to

retrieve search suggestions from Google, and Bing Autosuggest API enables smaller players such as

DuckDuckGo to source search suggestions from Bing. Despite their prevalence in search markets,

there is limited causal evidence of the impact of external data capabilities on the recipients’ product

performance. Measuring the impact of external data capabilities in search markets is also important

from a policy perspective. For example, the Digital Markets Act requires leading search engines to

provide smaller players with access to privacy-preserving search results with the aim of leveling the

playing field.2

Theoretically, leveraging external data capabilities introduces a potential intertemporal trade-

off for smaller players in search markets. On the one hand, queries can be ambiguous, broad, or

heterogeneous (Sanderson, 2008), so smaller players often utilize external, established sources to

generate predictions in response to those queries (Kopliku et al., 2014). As a result, access to

external data capabilities can enhance performance with little risk for smaller players, especially at

the early stage of product development (Rahmandad, 2012). On the other hand, over time, excessive

reliance on external data capabilities might taper the accumulation of internal data, limiting smaller

players’ development of internal data capabilities in the long run (Gupta et al., 2006; Laverty, 1996).

In this paper, we analyze a large-scale field experiment to measure the impact of the removal of

1A note on terminology. We use general terms such as “external data capabilities” and “the market leader’s data
capabilities” and specific terms such as “the market leader’s candidate items” interchangeably throughout the paper.

2For an overview of the Digital Markets Act, see: https://ec.europa.eu/info/strategy/priorities-2019-2024/eu
rope-fit-digital-age/digital-markets-act-ensuring-fair-and-open-digital-markets_en#documents.
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access to a leading search engine’s (i.e., the market leader’s) autocomplete API on the performance

of our partner company’s search product (i.e., a smaller player; hereafter, “the company”). We

further explore the heterogeneity and dynamics in user responses to the removal of API access.

The primary outcome of interest is clickthrough rate (CTR), a key performance indicator of search

success, online advertising effectiveness, and online behavior at large. The company made its initial

foray into the search market by launching search suggestions, an important initial application of

generative artificial intelligence models (Kucharavy et al., 2023; Park and Chiba, 2017; Serban et al.,

2016). In line with industry standards, search suggestions are generated by the underlying algorithm

that uses multiple sources to predict what users want to click in response to their queries. As a

smaller player in the search market, the company had leveraged the market leader’s autocomplete

API to retrieve candidate suggestions to generate its search suggestions. We partnered with the

search product team to experiment with access to the market leader’s autocomplete API while using

the same algorithm to generate search suggestions. This partnership provides an ideal context where

we can measure the causal effects of access to the market leader’s autocomplete API.

In this field experiment, more than 2.3 million users were randomly assigned to one of two

conditions over 108 days (about 16 weeks). In the control condition (the status quo), the com-

pany’s ranking algorithm ranks search-suggestion candidates retrieved from the market leader’s

autocomplete API along with its own search-suggestion candidates and generates a final list of

search suggestions in response to user-submitted queries. These candidates retrieved from the mar-

ket leader’s autocomplete API is what we refer to as “the market leader’s data capability”. The

queries to the market leader’s autocomplete API are not personalized because the company does

not provide user-specific personal data (e.g., search histories) in those API calls. In the treatment

condition, we remove access to the API: that is, the company’s ranking algorithm does not have

access to the market leader’s search-suggestion candidates and ranks only its own candidates. This

research design has three notable features. First, the intervention exogenously changes the sup-

ply of candidates at the ranking stage of the search-suggestion generating process, while holding

the ranking algorithm and user interface constant. Hence, the random assignment among millions

of users enables us to precisely estimate the causal effects of access to the market leader’s data
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capability. Second, maintaining a consistent treatment over 108 days enables us to estimate the

longer-term effects of access to the market leader’s data capability. Third, this design is closely

related to the broader agenda of the Digital Markets Act, which requires privacy-preserving data-

sharing agreements touted to have significant benefits for companies in the marketplace.

We report three findings. First, on average, removing access to the market leader’s autocomplete

API leads to a 4.6% decline in CTR on search suggestions. We also document who is more (less)

responsive to the intervention. For example, the negative impact of removing the market leader’s

autocomplete API is more pronounced for heavy users (v.s. light users), suggesting that access to

the market leader’s API is more effective in helping user retention by streamlining heavy users’

experience than in ameliorating the cold-start problem for light users.

Second, leveraging the random assignment as an instrumental variable, we establish the link

between clicking on search suggestions and clicking on the result at the top of the SERP (i.e.,

top-slot search result). Specifically, the elasticity of CTR on the top-slot search result with respect

to CTR on search suggestions is 0.185. That is, a 10% increase in CTR on search suggestions leads

to a 1.85% increase in CTR on the top-slot search result. These results demonstrate, on average,

the downstream impact of the market leader’s data capability on user engagement on the SERP.

Third, the magnitude of treatment effect estimates drops over the 16-week experimental period.

It starts at about a 8.1%–9% decline in the first 3 weeks and becomes less negative at 3.6%–4.5%

in the last 3–4 weeks. These estimates suggest that, had we run a short-term experiment, we could

have overestimated the value of the market leader’s data capability (the negative effect of API

removal) by a factor of 2. To shed light on the underlying mechanism, we find that the magnitude

of treatment effects is smaller as queries accumulated more internal data (searches) over time. That

is, in the absence of the market leader’s API, there appears to be a gradual improvement in the

company’s autocomplete search suggestions because of internal data accumulation. Over time,

such an improvement gradually mitigates the negative effect of removing the market leader’s API

access. We further verify that this data pattern is not driven by (1) diminishing returns to external

candidates, (2) user adaptation, (3) dynamic self-selection, or (4) unobserved spillover effects.

Our findings offer practical implications for managers and policymakers. First, we substantiate
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a critical intertemporal trade-off in leveraging external data capabilities. On the one hand, over

the entire experimental period, removing access to the market leader’s API reduces CTR on both

search suggestions and SERP.3 On the other hand, exploring the dynamics in the treatment effects

suggests that extensive reliance on the market leader’s data capability tends to limit internal data

accumulation over time, which could impede improvements in autocomplete predictions in the longer

term. Thus, managers need to develop strategies that bridge the gap between quick wins and lasting

success. For example, in the second field experiment, we show that lowering the rank of the market

leader’s candidate items (rather than removing the market leader’s API access altogether) may

enable the company to benefit from the market leader’s data capability while potentially preserving

internal data accumulation.

Second, our findings inform regulations such as the Digital Markets Act, which requires large

digital platforms/gatekeepers to share depersonalized data with smaller players in search. Indeed,

there are notable economic benefits of privacy-preserving data sharing for smaller players in the

search market, especially in the initial stages of product development. Yet policymakers need to be

mindful of smaller players’ self-development in the longer term. In addition, access to gatekeepers’

data capabilities is not a panacea for the lopsided market structure given the degree of market

concentration in the search market (e.g., Google has more than 80% market share in the U.S.).

Notably, recent work by Allcott et al. (2024) suggests that alternative policies targeted at switching

defaults may have a more significant impact on market structure in the context of web search. Given

that research in this area is in its infancy, policymakers could take a multi-faceted approach that

systematically evaluates the role of defaults, data capabilities, and interoperability, among others.

Related Literature Our paper contributes to four strands of academic literature. First, we

contribute to the literature that aims to quantify the value (of different dimensions) of data for search

engines and related online products. Yoganarasimhan (2020) analyzes how utilization of user-level

data can help in the personalization of search and quantifies significant returns to personal data.

Chiou and Tucker (2017) analyze the efficacy of search recommendations when companies such as

3More broadly, our research substantiates the potential impact of restricting access to large platforms’ API, as was
the case with Google, Reddit, and Yahoo. For more information, see: https://developers.google.com/search/blo
g/2015/07/update-on-autocomplete-api; https://www.reddit.com/r/rootgame/comments/14jmfzx/reddit_is_k
illing_thirdparty_apps_and_itself/ and Havakhor et al. (2024).
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Yahoo! and Microsoft reduced the amount of individual-level data retention to 90 days and found no

change in a user’s CTR. Schaefer and Sapi (2023) analyze the role of within and across user learning

for algorithms used by search engines to increase engagement. Klein et al. (2022) demonstrate the

need for large players to share user-generated data to improve the performance of competing search

products. Zhao et al. (2023) document that limiting the use of personal data, the implementation

of General Data Protection Regulation increases consumers’ efforts in general and product search.

These papers are motivated by privacy regulations and the role of data in conferring market power

to search engines. We augment this strand of research by analyzing how access to external data

capabilities, a combination of data and inferences based on that data, impacts search product

performance using a large-scale, longer-term field experiment. We demonstrate that depersonalized

search-suggestion candidates via a leading search engine’s API could help search products grow

successfully, at least in the short run, but there could be a trade-off between the short-run benefit

and the longer-term development of the focal product. Finally, we take a middle path and analyze a

privacy-preserving situation where depersonalized data inputs from external sources could be used

for product development. More generally, we speak to regulations associated with mandated data

sharing across search engines in a privacy-preserving manner.

Second, we contribute to the literature that analyzes different strategies for platform growth.

Benzell et al. (2023) use aggregate data on online platforms to demonstrate how a firm can grow by

opening itself up to third-party complementors using APIs. Relatedly, Peukert et al. (2024) quantify

the value of personal data (or lack thereof) for an algorithm relative to human experts. Sun et al.

(2024) simulate a privacy regulation through a field experiment on Alibaba to quantify the value

of individual-level data for platform users. They find significant negative effects on engagement

and purchase when personal data is not used for product recommendations. Relative to these

papers, and to Sun et al. (2024) in particular, we analyze a different yet economically meaningful

context of search, which, as summarized in Online Appendix Table A1, is theoretically distinct

from e-commerce in terms of their recommender systems and the potential use for external data

capabilities. Moreover, whereas Sun et al. (2024) study the value of personal data in a business-to-

consumer setting, we study the extent to which access to the market leader’s data API influences
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smaller players in search (i.e., a business-to-business data-sharing mechanism). Next, relative to

extant studies with a short-term experiment, our 108-day experiment enables us to uncover a trade-

off where external data capabilities can help product performance initially, but over-reliance in the

longer term could inhibit focal prediction development based on internal data.

Third, we contribute to a strand of literature that analyzes the impact of utilizing several forms

of third-party data on firm outcomes. Beraja et al. (2023) show that access to government data, in

the form of surveillance videos, leads to AI innovation in the facial recognition industry by private

companies in China. Similarly, Nagaraj (2022) finds that access to publicly available Landsat, a

U.S. National Aeronautics and Space Administration satellite mapping program, leads to more gold

discoveries especially by new entrants. In the case of online platforms, Chan et al. (2022) show

that access to employer-verified employment data via Equifax benefits both auto loan borrowers

and lenders. Havakhor et al. (2024) utilize the shutdown of Yahoo Finance API to show that

access to high-volume historical and real-time price data causes retail investors to trade excessively

with worse outcomes. Wernerfelt et al. (2024) leverage a field experiment to show that a loss of

off-platform cookie data increases the customer acquisition cost for advertisers on Meta. Using

our experimental setup of data sharing through the market leader’s autocomplete API, we can

cleanly identify dynamics in the treatment effects within a policy-relevant search context. More

generally, we focus on a widely used, external source of data capabilities (i.e., API access), providing

implications for other companies that aim to utilize such an external source for their product growth.

Finally, we contribute to a nascent strand of literature that focuses on the efficacy of text-based

search on e-commerce platforms. Zheng et al. (2023) leverage a field experiment on a food delivery

platform to understand the impact of related product suggestions in the search bar interface on the

amount and diversity of consumption. Fang et al. (2024) analyze the impact of textual refinement

and visual cues in the search bar on short- and long-term consumption patterns. Similar to these

papers, our paper analyzes the impact of an intervention targeted at facilitating the search process,

and our estimates are in the same ballpark as these papers. A key differentiator is that we examine

the role of a business-to-business data sharing mechanism via access to the leading search engine’s

API, a lever of strategic and policy relevance (Benzell et al., 2023; Li and Kettinger, 2021).
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2 Empirical Setting

In this section, we describe the empirical setting with a focus on (1) search-suggestion generating

process through the lens of the algorithmic funnel, (2) the role of the market leader’s autocomplete

API in shaping such a process, and (3) our choice of target metrics that measure the performance

of search suggestions.

We partnered with a large technology company in China that develops a mobile app for users

to gather, consume, and share information. The app offers various in-app products such as news

feed, search engine, and video and eBook streaming, each with its dedicated product interface.

We focus on search suggestions, the main search product with approximately 100 million monthly

active users (100% mobile) as of September 2021. By design, search suggestions function as query

autocomplete, which is similar to the autocomplete feature offered by Google Chrome. Search

suggestions are considered as an early-stage application of generative artificial intelligence models.

Generative models produce system responses that are autonomously generated word-by-word, which

open up the possibility for realistic, flexible interactions (Serban et al., 2016). Figure 1 provides an

illustration of the app interface. When users enter a specific query term into the search bar (e.g.,

covid), they typically see a list of ten search suggestions in the form of phrases and/or sentences

in response to the query (e.g., “What does a covid-19 Ag mean?”). A user can choose to click a

matched suggestion, press the search button without adopting search suggestions, delete this query

and enter a new one, or quit the session.

Companies invest significant resources in search suggestions and related contexts of predictive

text completion (Agrawal et al., 2018). Search suggestions streamline the search process, bridging

the gap between users’ search intent and content consumption. Optimizing search suggestions is

important because our partner company intends to monetize this process. For example, search

suggestions may accelerate the process of finding desired results at the top of the search engine

results page (SERP), and clicks on such search results generate substantial revenue (Schaefer and

Sapi, 2023; Ursu, 2018). Moreover, the search team’s longer-term objective is to monetize search

suggestions with built-in brand logos and websites (e.g., JD.com), and clicks on these search sugges-
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tions would guide the search process to the SERP or could even take users straight to the websites

without landing on SERP.4 Indeed, search box optimization is an increasingly popular strategy for

additional visibility early in the search process (Zaif, 2023).

Figure 1: An Illustration of Search Suggestions

How does the company generate search suggestions in response to user-submitted queries? At

a high level, the company uses a proprietary algorithmic funnel, a three-stage architecture similar

to a recommender system (Covington et al., 2016): (1) item generation, (2) candidate generation,

and (3) ranking. Figure 2 provides an illustration. At the item generation stage, the company first

builds raw items based on (a) internal sources in the news feed (e.g., articles and videos) and query

terms from users’ active search histories and (b) external sources such as public trending news.

Next, the company uses natural language processing techniques (e.g., keyword extraction, text

summarization) based on large language models to transform raw items into phrases and sentences.

As a result, this large item base contains millions of phrases and sentences that are filtered at the

4While our experiment was running, the search team started deliberating about the concept of direct reach. Direct
reach products would appear as brand logos or information guiding the search process to the SERP and could even
lead the user straight to the websites without landing on SERP. More broadly, as of 2024, direct reach products are
prevalent in China among general search engines (e.g., Baidu, Sogou) and specialized search engines on social media
platforms (e.g., ByteDance, Xiaohongshu). Notably, unlike sponsored ads on the SERP, direct reach products are
not associated with disclosure labels. Moreover, public documents suggest that search engines enter into bilateral
contracts with companies for direct reach products in search suggestions, where rates are determined based on traffic
thresholds. This process is different from the real-time auctions for sponsored search results.
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next stage. At the candidate generation stage, a subset of candidate items relevant to the submitted

query are retrieved from the item base based on their popularity on the platform (e.g., common and

trending searches). As a standard practice in such a context, this stage does not utilize personal

data because of the need to filter through millions of data points (Mitra and Craswell, 2015). As

a result, hundreds of candidate phrases and sentences are selected to enter the ranking stage. At

the ranking stage, there are several steps of retrieving a larger number of features and the use of a

pre-trained algorithm. Eventually, a ranking algorithm scores each candidate item according to its

predicted click-through rate, which is a function of user (e.g., location, search histories) and query

(e.g., topic, freshness) features. The highest-scoring items are presented in a ranked order in the

final list to users. The literature shows that sophisticated algorithms are utilized to handle a larger

feature set at the ranking stage and rank fewer items. This contrasts with the candidate generation

stage that uses generic models and considers a larger set of items focusing on efficiently pruning

duplicate and irrelevant items (Covington et al., 2016; Nandy et al., 2021).

Figure 2: An Overview of the Algorithmic Funnel

However, a key challenge of developing a new search product, such as search suggestions, is

the potential lack of candidate items with respect to quantity and quality. For example, at the

initial development stage, the company’s algorithmic funnel may generate a relatively shorter list

of search suggestions that could match users’ search intent. To address this problem, the company

had started to leverage access to the autocomplete API of a leading search engine in China (i.e., the

market leader’s API). The company’s hypothesis is that because of its large user base and capability
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to present relevant, timely results to of millions of users at scale, the market leader may (1) provide

the company with access to more precise candidate items with respect to their popularity and

freshness, and (2) expand the scope of the company’s candidate items with respect to their topic

coverage, both of which can be used in the ranking stage to generate a list of search suggestions.

How does the market leader’s API work? At a high level, the company and the market leader

form a business-to-business contractual relationship where the company acquires a license to the

market leader’s API. To initiate the data request, the company provides the market leader’s API

with its user-submitted queries in real time, which are used by the market leader’s API to return

a set of candidate items. Importantly, to preserve privacy, the focal company does not provide any

personal information (unless explicitly volunteered by the user through their query) such as search

histories. Put it differently, the candidate items received from the market leader’s API represent

predictions of aggregate, trending searches based on the market leader’s data and the inferences

based on its candidate generation algorithm. It is pertinent to note that neither we as researchers nor

the company observe any details of how the market leader generates its candidate items or updates

its candidate generation algorithm (i.e., a black box). Hence, we cannot separate the impact of

data from that of the inferences and refer these candidate items as data capabilities, a concept

highlighted in the literature and policy discussions (Ubaldi, 2013; Zeleti and Ojo, 2017). And then,

at the ranking stage, the algorithm uses (1) candidates items from the market leader’s API as an

additional input along with (2) its own candidate items to generate a list of search suggestions in a

ranked order. The company and market leader have an agreement where the company pays service

fees to the market leader at an undisclosed rate for each query it makes through the API (see Figure

A1 in the Online Appendix).

Concretely, building on Figure 2 and the discussion above, Figure 3 decomposes the entire pro-

cess where the company’s ranking algorithm meets the market leader’s API. To fix ideas, consider

the user i who enters the search query j into the search box (e.g, covid). First, the company’s can-

didate generation model filters through millions of items and retrieves about 100 relevant candidate

items from its item base (items indexed by k=1,2,3,...,K), associated with query j based on their

popularity. Second, the ranking algorithm scores each candidate item based on user (e.g., location,
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search histories), query (e.g., topic, freshness), item features, and interactions among such features

and sorts them according to their predicted click score Click Scorejc (i.e., Steps 1–3 under Rank-

ing). Third, given query j, another set of depersonalized candidate items is retrieved from the

market leader’s API in a ranked order (cAPI(1), cAPI(2)...). Fourth, for each candidate item from

the market leader’s API, the ranking algorithm assigns a score Click Scorejc,API (i.e., Step 4 under

Ranking). Lastly, the ranking algorithm re-ranks the mix of candidate items from two sources to

generate a list of highest-scoring items as search suggestions (i.e., Step 5 under Ranking). Hence,

access to the market leader’s API changes the supply of candidate items entering into the ranking

stage. The overall architecture used by the company mirrors existing industry standards.

Figure 3: Search-Suggestion Generating Process: Decomposing the Algorithmic Funnel

Notes: The rank order was determined based on the click score, a continuous measure based on a
variety of input features, so it is unlikely that there were ties between two search suggestions with
respect to their click scores. During our experiment, alpha was determined based on the team’s
problem-solving heuristics and expertise to boost the rank of trending news and search histories.

Notably, this setup reflects a specific form of data sharing agreements between companies and

provides a context to analyze the economic value of data sharing. First, at the time of the field

experiment, the market leader’s API was indeed available to other entities in the market. Second,
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candidate items retrieved from the market leader’s API mirror how Google custom search API

provides developers with response data that can be incorporated (Alrashed et al., 2020; Zaveri

et al., 2017). Third, this context provides an example of how gatekeepers could provide smaller

players or startups with “access on fair, reasonable and non-discriminatory terms to ranking, query,

click and view data,” if mandated within the framework of the Digital Markets Act. The details

of the Digital Markets Act and similar regulations are still being finalized, so our analysis can be

viewed as an early look at the practicalities and potential benefits of data sharing by gatekeepers.

How do we evaluate the performance of search suggestions? Our conversations with the search

product team revealed that the target metric is click-through rate (CTR), a widely-used key per-

formance indicator of search success in online markets. CTR is important from the company’s

perspective because customer satisfaction with the search product depends on the search engine’s

ability to serve relevant results (Yoganarasimhan, 2020). In the context of search suggestions, CTR

is measured as the ratio of number of clicks to search suggestions in a list to the number of expo-

sures. Specifically, when a user starts typing a keyword into the search bar, this user is exposed to a

list of search suggestions in this session (i.e., one exposure). If a user clicks to any search suggestion

in this list, such an action will be counted as one click. To ensure that our results are not sensitive

to the variation in exposures, we conduct robustness checks using alternative measures such as the

number of clicks and the probability of any click. We can measure CTR for each user on a daily

basis or over a longer period (e.g., week). To capture the overall user activities, rather than a user’s

specific search session, we focus on the aggregate CTR for each user: the ratio of the total number

of clicks to total number of exposures over the entire experiment (Yang et al., 2024). Moreover,

since clicks on the SERP represent a key metric of search quality (Schaefer and Sapi, 2023), we also

examine CTR on search results as a downstream outcome of interest.

However, measuring the causal effects of the market leader’s data capability (candidate items

retrieved from the market leader’s autocomplete API) on target metrics is challenging without

exogenous variation on this dimension. To circumvent this challenge, we conducted a large-scale

field experiment where we manipulated access to the leading search engine’s autocomplete API

while holding all other aspects (e.g., algorithms, user interface) equal.
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3 Field Experiment

3.1 Experimental Design

The randomization was implemented at the user level in real time. That is, as soon as a user started

typing keywords into the search bar in a given time point during the experiment, she was randomly

assigned to one of two conditions.5 Once a user was assigned to a condition, this user stayed in

the same condition until the experiment ended. We maintained a consistent treatment assignment

over 108 days from May 17, 2021 to September 1, 2021. Figure 4 visualizes our design.

Figure 4: Experimental Design

Control (N=1,194,619): In response to user-submitted queries, search suggestions are generated

by the company’s proprietary algorithm funnel, including item generation, candidate generation,

and ranking. In the control condition, at the ranking stage, the ranking algorithm scores candidate

items from two sources: including (1) those retrieved at the candidate generation stage and (2)

5The company ensured that users in this experiment did not overlap with the users in any other experiment conducted
simultaneously on the platform. Like other major technology companies such as LinkedIn, Google, and Microsoft,
the company uses the standard design of overlapping experiments to run experiments simultaneously and efficiently
(Figure 2b in Tang et al. (2010)) and hash-based assignment (rather than the use of ephemeral random numbers) to
ensure no correlation between the assignments with multiple experiments running (Xu et al., 2015).
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those supplied by the market leader’s API. Next, the ranking algorithm generates the highest

scoring items in a ranked list. As a result, users in this condition see a sizable proportion of search

suggestions supplied by the market leader even though the number of search suggestions from the

market leader might differ across users depending on queries, demographics, and search histories.

Treatment (N=1,195,625): In response to user-submitted queries, search suggestions are gen-

erated by the same proprietary algorithm funnel without access to the market leader’s API at the

ranking stage. The ranking algorithm (the same as the one used in the control condition) scores

only candidate items retrieved from the candidate generation stage and generates the highest scor-

ing items in a ranked list (i.e., no Step 4 in Figure 3). As a result, users in this condition never

see search suggestions supplied by the market leader.6 Notably, our treatment does not cause any

change in the user interface: that is, there is no disclosure to the user of whether a search suggestion

comes from the market leader’s autocomplete API.

3.2 Data

The primary data set for analyses is at the user-level (the unit of randomization) where we observe

a unique user identifier, treatment status, number of exposures to search suggestions, number

of clicks to search suggestions, and search button usage. In addition, we observe pre-experimental

characteristics, such as demographics (e.g., gender, city of residence), mobile operating system (e.g.,

Android), and activity level (e.g., active days in the past 30 days). About 82% of users have used

the search bar prior to the experiment in this data set. The dependent variable, aggregate CTR,

is computed for each user as the ratio of the total number of clicks to total number of exposures

over 108 days. We conduct several checks to ensure that the random assignment is successful.

Table 1 shows that the mean difference in observables across conditions is neither economically nor

statistically significant. Figures A2-A4 in the Online Appendix show that users were equally likely

to be assigned to either condition over the course of our experiment, regardless of whether they are

new users on any given day (e.g., if a user had not used the search bar since the beginning of the

6It is pertinent to note that any updates to the training data input during the experimental period remains separate
for treatment and control conditions. Similar to data-diverted experiments proposed in Holtz et al. (2023), this was
explicitly done to prevent Stable Unit Treatment Value Assumption (SUTVA) violations.
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experiment and did so for the first time on day t, she is considered a new user on day t).

Table 1: Randomization Checks

User Characteristics Control Treatment p value

Male 0.5034 0.5037 0.6724

(0.0005) (0.0005)

Larger Cities 0.5053 0.5048 0.4254

(0.0005) (0.0005)

Smaller Cities 0.4340 0.4346 0.3485

(0.0005) (0.0005)

Mobile Operating System: Apple iOS 0.1067 0.1066 0.7358

(0.0003) (0.0003)

Mobile Operating System: Android 0.8368 0.8369 0.7944

(0.0003) (0.0003)

Active days in the past 30 days (search activities) 100 99.8259 0.4257

(0.1547) (0.1544)

Query views in the past 30 days (search activities) 100 99.3835 0.1263

(0.2878) (0.2825)

Notes: This table shows the balance along several observable dimensions between users in the treatment
condition and those in the control condition. The second column and third column provide the mean of
each variable with the standard error in parentheses. Following the hierarchical classification of Chinese
cities, larger cities include tier 1 to 4 cities (e.g., tier 1: largest cities such as Beijing), whereas smaller
cities refer to tier 5 cities and below. p-value is obtained based on a two-sided t-test on the equality of
means with unequal variances. For confidentiality purposes, values reported in the last two rows were
normalized so that the variable means in the control condition are 100.

We further supplement this user-level data set (Primary Data) with two additional data sets.

First, we collect user-level metrics such as the number of searches conducted on the search engine

results page (SERP), the number of clicks on the top-slot search results, and the number of clicks

on the other-slot search results (SERP Data). Second, we collect detailed log records of a random

sample of our experimental subjects (11,630 treated users and 11,913 control users) starting from

June 26, 2021 (Granular Data). We were not able to collect log-level data for the entire experiment

sample nor data for the random sample prior to June 26, 2021, due to the company’s data retention

policy. In each log record in Granular Data, we observe the query term entered by each user,

content category associated with the term, the ordered list of search suggestions provided, and

whether and what a user clicked. On average, there are 8.80 and 8.68 search suggestions presented

to users in the control and treatment conditions, respectively.
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4 Empirical Analyses

4.1 Empirical Framework

We use a potential outcome framework to specify our model. For illustration purposes, we consider

an experiment with N users who are randomly assigned to one of two conditions: that is, treatment

(e.g., API removal) or control condition. For a set of independent and identically distributed users

i = 1,...,n, we observe the outcome of interest Yi (e.g., CTR aggregated over 108 days); treatment

assignment Ti; and a vector of user characteristics Zi (e.g., demographics, past search activities).

For each user i, there are two potential outcomes: if a user is assigned to the treatment condition,

we observe the outcome Yi = Yi1, and if the user is assigned to the control condition, we observe

Yi = Yi0. In theory, the average treatment effect (ATE) is E[Yi1−Yi0], can be used to assess whether

the treatment causes changes in Yi. Alternatively, we can estimate the following regression:

Yi = α+ β × Ti + ϵi, (1)

where β captures the causal effect of the removal of the market leader’s API on the outcome of

interest (e.g., CTR aggregated over 108 days). Because of the successful randomization, we do not

expect the controls Zi to affect the estimate of β. Therefore, we estimate the regression without

control variables as the baseline results and use heteroskedasticity-robust standard errors.

Another important consideration is that β itself does not provide a sense of the effect magnitude.

Hence, we report the lift estimates to facilitate the interpretation of estimates as the magnitude and

comparison across experiments (Goli et al., 2024; Gordon et al., 2023): the incremental CTR among

treated users relative to control users as a percentage of CTR among control users (
Y1 − Y0

Y0

or
β̂

α̂
).

A negative (positive) value of the estimated lift indicates a decrease (an increase) in CTR among

treated users relative to control users. Importantly, the lift is a ratio of two random variables,

making it a random variable. Therefore, we use the Delta method to derive approximations for the

mean and variance estimates of the lift (Casella and Berger, 2002; Deng et al., 2018).
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4.2 Baseline Effects

4.2.1 Average Treatment Effect and Treatment Effects by User Characteristics

We start with estimating the average treatment effect. As shown in Figure 5, there is a statistically

significant and negative treatment effect over 108 days of the experiment: on average, API removal

decreases the search-suggestion CTR by 4.6% in the treatment condition relative to the control

condition (i.e., the average lift is –4.6%).7 The large sample size gives us a precise estimate as the

width of the 95% confidence interval is less than 10% of the absolute value of the point estimate.

Notably, the magnitude of the effect is economically significant in the context of digital experimen-

tation in search. Relative to other academic studies, the magnitude is in line with the 1–2% effect

in Zheng et al. (2023) for the impact of related product suggestions in the search bar interface on

relevant metrics for an online food delivery platform. Similarly, Fang et al. (2024) find that textual

and visual refinement of text search leads to a 1.3% increase in purchases over 24 weeks on an

e-commerce platform, while Yang et al. (2024) find that incorporating advertising information in

ranking search listings leads to an additional 0.15%–0.57% increase in key metrics of interest.8

Next, we explore whether treatment effects vary with pre-experimental user characteristics to

dig into who is more (less) responsive to the treatment of API removal. The first dimension relates

to gender and city of residence as possible sources of heterogeneity. We see that (1) treatment

effects are economically and statistically indistinguishable for female and male users, and (2) the

treatment effect is significantly larger among users in larger cities than those in small cities. From

a managerial perspective, these findings inform the company’s growth and segmentation strategy

for a nascent online product based on readily available demographic variables.

The second dimension is to examine whether users with different activity levels are more or

less responsive to API removal. A priori, it is unclear whether external candidate items will help

7In Online Appendix D, we have presented our results in the form of tables, each of which is a companion to the
corresponding figure (e.g., Table D1 corresponds to Figure 5, Table D2 corresponds to Figure 6, etc.).

8As a relevant benchmark, 70%–80% of experiments in digital markets yield statistically and economically insignificant
results (Kohavi et al., 2013). See comments by Ronny Kohavi, former VP of Analytics and Experimentation at Bing,
here https://www.facebook.com/watch/?v=2368597899925946. It is also important to note that there are
some dimensions, such as benefits of saving time, which were not capture through our analysis. Aggregated over a
significant user base and time, the cost savings of such a streamlined search could be substantial.
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solve the cold-start problem for light or provide a more streamlined experience for heavy, or both.

To examine this, we use the number of search-related active days in the past month prior to

the experiment to differentiate light users from heavy users. We construct an indicator variable,

heavy user, which is equal to 1 when a user’s number of search-relate active days is strictly above

the median and zero otherwise. Figure 5 shows that the magnitude of the negative effect of API

removal among heavy users is significantly larger than that among light users. This pattern is highly

consistent when we use the number of query views in the past month prior to the experiment as an

alternative. A plausible explanation is that because heavy users are more experienced, they may set

a higher expectation of product quality and are more sensitive to changes in the quality of search

suggestions due to the absence of the market leader’s data capability.9 In this regard, our results

complement Sun et al. (2024) where they find that the use of personal data in the recommendation

benefits light users more when data volume and customer resilience coexist in their context.

Next, we look at another metric, search button usage, to explore whether individuals use this

alternative path to bypass search suggestions as the quality of the suggestion decreases. In par-

ticular, if the search suggestions become less useful for users, they might use the search button as

an alternative way to navigate and bypass the search suggestions to go straight to the SERP. On

average, we find that API removal significantly increases the usage of the search button by 5.7%.

This increased effect on search button usage demonstrates a spillover to the search button as a

substitute for search suggestions as the quality of the suggestions declines with the removal of the

API.

Lastly, we carry out a variety of checks to test for the robustness of our baseline estimates (Table

A3, Online Appendix). First, we estimate the treatment effect using only the first-day observation

of each user in the experiment (i.e., the first day of the experiment when a user interacts with search

suggestions). Second, we estimate a linear regression adjusting for observed user characteristics to

potentially improve the precision of the estimate, and check the stability of results among the

sample where all user characteristics are observed. Columns (1) and (2) show that the results

9In Online Appendix B, we further explore how treatment effects vary by the popularity of a content category and
find that the negative treatment effect is driven by queries in popular categories. It suggests that due to the size
of its user base, the market leader’s autocomplete API provides the company with access to useful candidate items
with respect to their popularity based on real searches on the market leader’s platform.
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are qualitatively similar to our baseline estimates. Third, our results are robust to alternative

operationalizations of the dependent variable, including the click dummy (Column (3)) and the

logarithm of one plus the number of clicks (Column (4)). Lastly, we estimate a linear regression

with moderators rather than subsample analysis and find consistent results (Column (5)). In

summary, these checks provide an additional degree of confidence in our baseline results.

Figure 5: Average Treatment Effect and Heterogeneous Treatment Effects by User Characteristics

Notes: Lift refers to the incremental CTR among treated users relative to control users as a percentage of
CTR among control users. CTR is computed as the ratio of the total number of clicks to total number of
exposures over the entire experiment (108 days). The regression is specified in Equation 1. Overall refers
to the average treatment effect based on the full sample (N=2,390,244), while heterogeneous treatment
effects are based on subsamples by user characteristics (gender, city size, user activity). Error bars
represent 95% confidence intervals of lift estimates, which are calculated using the Delta method.

4.2.2 Downstream Impact on the Search Engine Results Page (SERP)

To gauge the downstream impact, we establish an empirical link between clicking on search sugges-

tions and clicking on results on the search engine results page (SERP). That is, we translate the

decrease in clicking on search suggestions into a decline in clicking on search results. Specifically, we
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focus on top-slot search results because they capture customer satisfaction with the search product

and the relevance of top-slot clicks is well established in the literature in terms of revenue implica-

tions for the company (e.g., Schaefer and Sapi (2023); Ursu (2018); Yoganarasimhan (2020)). Using

SERP Data, we operationalize the CTR on search results using (a) CTR on top-slot search result

and (b) CTR on other-slot search results.

The experimental variation that removes access to the API leads to an exogenous shift in CTR

on search suggestions (the first-stage F-statistic is 506.85; Table D2, Online Appendix). Moreover,

due to the randomization, the API removal does not impact clicks on links on the SERP apart

from its impact through the change in CTR on search suggestions. Thus, using API removal as the

instrumental variable (IV) for CTR on search suggestions, we can estimate the causal relationship

between CTR on search suggestions and CTR on the top-slot search result via two-stage least-

squares. We log-transformed all variables to enable the interpretation of coefficient as elasticity.

Figure 6 presents the estimated elasticity.

Figure 6: Elasticity of CTR on Search Results with respect to CTR on Search Suggestions

Notes: N=1,653,659. Error bars represent 95% confidence intervals of lift estimates,
which are calculated using the Delta method. For estimation details, see Table D2.

Specifically, the elasticity of CTR on the top-slot search result with respect to CTR on search
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suggestions is 0.185. That is, a 10% increase (decrease) in CTR on search suggestions leads to

a 1.85% increase (decrease) in the CTR on the top-slot search result. This implies that clicking

on search suggestions has a downstream impact on clicking on top-slot search results. In Online

Appendix C, we conduct a back-of-the-envelope calculation to shed light on the economic implica-

tions of access (or lack thereof) to external data capabilities. Next, if the CTR on top-slot search

results increases, is it a market expansion effect or a substitution effect from other slots? Figure 6

shows a substitution effect. This implies that search suggestions streamline the search process by

facilitating relevant top-slot search results, reducing attention on the lower slots.

4.3 Long(er)-Term Effects

A novel aspect of our design is that a consistent 16-week treatment assignment allows us to estimate

the longer-term effects. Following Goli et al. (2018), we estimate a regression for each week as if

that week were the final one. This gives us 16 separate regression estimates. Figure 7 shows how

the lift estimates vary over time, with the solid (dotted) line representing the point estimates (the

95% confidence intervals). The absolute values of the estimates start at about a 8.1%–9%, with

those decreasing to 3.6%–4.5% in the last few weeks. Thus, had we run a short-term experiment,

we could have overestimated the value of the market leader’s data capability by a factor of 2.
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Figure 7: Longer-Term Effects

Notes: Lift refers to the incremental CTR among treated users relative to control users as a percent-
age of CTR among control users. The figure plots weekly lift estimates based on linear regression
for the entire sample until the end of that week. Error bands represent 95% confidence intervals of
lift estimates, which are calculated using the Delta method. For details, see Tables D3 and D4.

4.3.1 Do Our Results Reflect Diminishing Returns to External Candidate Items?

A possible explanation is that the decline in the magnitude over time could reflect diminishing

returns to external candidate items (Peukert et al., 2024). That is, treatment effects could be

less negative over time if the API-generated candidate items become less valuable over time. To

examine this possibility, we focus on the trend in CTR among the users in the control condition

where the candidate items are supplied by both the focal firm and the market leader. If the observed

longer-term effect were to be driven by diminishing returns to external candidate items, the trend in

CTR in the control condition would show a concave pattern. In Figure A6 in the Online Appendix,

we conduct a calibration analysis to test the curvature of the weekly average CTRs among the

users in the control condition (Committee, 1994; Johansson, 1979; Little, 1979). This calibration

exercise cannot reject the null of a linear trend; hence, these results do not support a concave trend

indicating diminishing returns to candidates items from the external API.
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4.3.2 Do Our Results Reflect User Adaptation?

Another possible explanation is that users have a strong initial negative response to the changes in

quality of search suggestions due to API removal and then gradually get used to such changes over

time—user adaptation. This adaptation might explain the upward trend in the treatment effect

estimates. However, this is less plausible in our setting because our treatment does not involve the

disclosure of API items to the user. Moreover, we plot treatment effect estimates over time across

two subgroups: new users vs. returning (experienced) users. We define new users on a weekly basis:

During the 16-week experimental period, new users at week t are those who have never used the

search bar since the start of the experiment and used the search bar for the first time at week t.

Our hypothesis is that new users had few interactions with the product, so adaptation should be

minimal for new users. Therefore, examining treatment effects over time among new users should

help us understand if our effects are driven by user adaptation over time. Figure 8 shows that the

treatment effects become less negative over the course of the experiment, even among new users

(solid line). Thus, our estimates are unlikely to be driven by user adaptation to API removal.10

4.3.3 Do Our Results Reflect Dynamic Self-selection?

The third possible explanation is that our results are driven by dynamic self-selection of users.

For example, our definition of new users could make the sample of new users became smaller over

time, causing the temporal changes in the sample of new users. Similarly, if returning users were

becoming inactive regarding their usage, the estimates would capture the treatment effect due to

temporal changes in the sample of returning users. First, as shown in Figure A3 in the Online

Appendix, our randomization ensures that the proportion of new users assigned to each condition

is balanced over time. Second, we examine whether the treatment induces a significant change in

query volume. We plot the weekly estimates of the impact of API removal on query volume among

new and returning users. Figure 9 shows that API removal does not cause a significant change

in query volume among treated users relative to control users in any week for both subgroups

10We find a similar trend for returning (experienced) users, but this trend could reflect a combination of user adaptation
and internal data accumulation. We examine the latter in Section 4.3.5.
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Figure 8: Longer-Term Treatment Effects on CTR by User Type: New vs. Returning Users

Notes: Lift refers to the incremental CTR among treated users relative to control users as a percent-
age of CTR among control users. The figure plots weekly lift estimates based on linear regressions
for sub-samples of new and returning users. Error bands represent 95% confidence intervals of lift
estimates, which are calculated using the Delta method. For details, see Tables D3 and D4.

(confidence intervals consistently contain zero). Together, these results suggest that the decrease

in the magnitude of lift estimates is unlikely to be driven by dynamic self-selection of users.11

11We further alleviate the concern of changes in the sample composition in the Online Appendix. First, Figure A4
shows the number of unique daily active users across two conditions track each other over time. Second, the average
effects on query volume are not significant for returning users (p=0.36) and new users (p=0.62). Third, Figure A5
verifies that over time, API removal does not cause a significant change in the query volume for the entire sample.
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Figure 9: Longer-Term Treatment Effects on Query Volume: New vs. Returning Users

Notes: Lift refers to the incremental number of queries entered by treated users relative to control users
as a percentage of the number of queries by control users. Error bands represent 95% confidence intervals
of lift estimates, which are calculated using the Delta method. For details, see Tables D5 and D6.

Figures 8 and 9 together suggest an interesting takeaway: whereas the market leader’s API

generates initial efficiency advantage since it effectively helps users reach the website they are

looking for, it does not seem to reduce the number of times users search. That is, our results

suggest that leveraging external data capabilities impacts the intensive margin behavior (clicks

conditional on search) but not the extensive margin (the search volume).

4.3.4 Do Our Results Reflect Violations of SUTVA?

The fourth possible explanation is that the decline in the magnitude of the longer-term effects could

be driven by a spillover across the treatment and control conditions. Over time, user-item-algorithm

interactions in the treatment (control) condition could affect the algorithm and subsequent search

suggestions to the counterparts. As a result, this spillover might make search suggestions more

similar across two conditions, gradually reducing the performance gap between the two conditions.

To examine this explanation, we provide institutional and empirical evidence. First, the al-

gorithm was held constant across two conditions, and the system in each condition was updated
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based on only data produced by users in that condition. Similar to the purpose of “data-diverted

experiments” proposed in Holtz et al. (2023), the goal of these system decisions was to prevent

SUTVA violations. Second, we use Granular Data (detailed log records of 11,630 treated users

and 11,913 control users) to examine the overlap between search suggestions in the two conditions.

If there were a spillover, the overlap would have increased for queries entered by both users in the

treatment condition and those in the control contion (i.e., common query). For example, if there

were a spillover, when users entered the common query “coffee”, the list of search suggestions in

the treatment condition would be more similar to that in the control condition over time.

Figure 10: Overlap Ratio of Search Suggestions in Response to Common Queries

In Figure 10, we observe that over time, the overlap ratio of search suggestions in the two

conditions decreases for the top 100, top 500, and top 1000 common queries, suggesting that the

decrease in the magnitude of lift estimates is unlikely to be driven by the spillover between the

treatment and control conditions. This exercise also lends credence to the steps taken by the search

team to keep data systems separate for the two conditions. Moreover, this diminishing overlap

seems to indicate that the system could provide better search suggestions over time to close the

performance gap across the two conditions, potentially due to the accumulation of internal data—

the mechanism we explore next.

27



4.3.5 Do Our Results Imply Better Prediction due to Internal Data Accumulation?

So far, we have provided evidence to rule out several alternative explanations for the observed

longer-term effects. Our thesis is that the decline in the magnitude over time could be driven

by the gradual improvement in the company’s search suggestions fueled by the accumulation of

internal data in the absence of the market leader’s data capability. Specifically, in the absence of

the market leader’s candidate items, the company’s search suggestions could be improved because

of additional internal data generated through user activities related to internal candidate items.

Therefore, in the absence of access to the market leader’s API, the relative improvement in the

company’s autocomplete predictions, based on its internal data, may gradually compensate for the

negative impact of API removal. If this were the mechanism, it could significantly impact firm

strategy in leveraging external data capabilities. In particular, it might suggest a fundamental

trade-off between short-run benefits and longer-run development of its internal data capabilities.

Yet can the company use external candidate items to develop its internal data capabilities?

In line with industry standards, although the focal company’s algorithm has pre trained, offline

pipelines to transform internal candidate items into features, it only has access to the output from

the market leader’s API and thus does not have pre-computing features for API items to be used for

training the algorithm in real-time. As a result, this causes an inference and data-sparsity problem

for external API-based output (Brinkmann, 2022; Sarwar, 2001; Stoica et al., 2017). Moreover, it

is unclear whether such API-related data-sharing agreements allow for using the API output for

training the focal algorithm. Indeed, a recent example is OpenAI API usage agreement, which

“prohibits using output from the API to develop a competing product” and “prohibits reverse

engineering the source code, model parameters and algorithm” (OpenAI, 2024). Similar concerns

of reverse engineering and the use of information to build competing products was one of the reasons

Google restricted access to its autocomplete API.

Specifically, we examine whether the negative effect of API removal could be weakened if the

queries accumulate more searches. The rationale is that if there were indeed improved predictions

due to the accumulation of internal data in the treatment condition in the absence of the market
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leader’s API, the negative impact of API removal would be mitigated for queries that accumulated

more internal data (e.g., search histories). To dive deeper into this mechanism, we constructed

the data set at the user-query-day level based on the Granular Data. This data structure allows

us to include query-fixed effects and day-fixed effects (to account for time-invariant unobserved

differences across queries and common temporal shocks) and clustered the standard errors at the

query level (to account for serial correlation within a query over time). In Column (1) of Table

2, we first replicate the baseline effect in this user-query-day level dataset of the random sample.

That is, the API removal leads to a decrease in CTR on search suggestions. In Column (2) of

Table 2, we provide evidence to support the hypothesis of improved prediction due to internal

data accumulation within the same user. We defined a time-varying indicator variable, Repeated

Queries (=1 if query j has been searched by user i prior to day t, 0 otherwise).

We can see that this interaction term is positive and significant, implying that the negative

impact of API removal is smaller for terms queried by the same user before. Furthermore, in

Column (3), we analyze whether the negative impact of API removal is smaller as the number of

times a query term has been input by other users apart from the focal user. We define a time-varying

cumulative measure, Query Histories: that is, the logarithm of the frequency of query j that has

been searched by other users apart from user i prior to day t. Again, we see that the interaction

term is positive and significant, suggesting that the negative impact of API removal is weakened

as queries establish their histories via user searches over time. These results, along with Figure 10

where search suggestions across the treatment and control conditions were becoming different over

time, suggest the prevalence of within-user and across-user learning based on internal data in the

absence of the market leader’s API (Hagiu and Wright, 2023; Schaefer and Sapi, 2023).12

Collectively, there are several takeaways from this section. First, a short-term evaluation would

have made us overstate the impact of the market leader’s data capability. Second, longer-term

effects are unlikely to be driven by (1) diminishing returns to external candidate items, (2) user

adaptation, (3) dynamic self-selection, or (4) unobserved spillover. Third, we provide evidence

that suggests a plausible mechanism of the longer-term effects: the focal company’s reliance on

12Notably, unlike analyses in Online Appendix B, a query with more internal searches over time does not necessarily
imply that the category where this query belongs is popular, since there are numerous queries in a given category.
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Table 2: Evidence on the Role of Internal Data Accumulation

(1) (2) (3)
Variables CTR CTR CTR

API Removal -0.0030*** -0.0171*** -0.0044***
(0.0005) (0.0040) (0.0009)

API Removal × Repeated Query 0.0145***
(0.0041)

API Removal × Query Histories 0.0004**
(0.0002)

Unit of analysis User-Query-Day User-Query-Day User-Query-Day
Query fixed effects ✓ ✓ ✓
Day fixed effects ✓ ✓ ✓
R2 0.2289 0.2289 0.2289
Observations 1,636,900 1,636,900 1,636,900

* p<0.1, ** p<0.05, ***p<0.01. Standard errors in parentheses are clustered at the query level. Inter-
cepts are omitted. Repeated Query is equal to 1 if the query j has been searched by user i prior to day
t, 0 otherwise. Query Histories is defined as the logarithm of the frequency of query j that has been
searched by other users apart from user i prior to day t. Data represent detailed log records of a random
sample of 11,630 treated users and 11,913 control users since June 26, 2021.

the leading search engine’s data capability tends to limit the improvement of its own autocomplete

predictions based on the accumulation of internal data. These findings highlight a critical trade-off

between short-term benefits and potential long-term gain.

5 An Extension with Field Experiment 2

In the previous sections, we have demonstrated the nuanced effects of the market leader’s data

capability on the company’s search product performance. In this section, we leverage another

one-day field experiment in July 2021 to achieve three objectives: (1) replicate the main results

from the first field experiment, (2) validate the manipulation of search suggestions provided by the

market leader’s API, and (3) assess the relative impact of manipulating the supply of candidates

into the ranking algorithm versus directly manipulating the rank of external candidates in the same

experimental setup.
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5.1 Experimental Design

Similar to field experiment 1, the randomization in this experiment was implemented at the user

level (see the randomization checks in the Online Appendix, Table A2). A total of 250,281 users

were randomly assigned to one of three conditions:

Control (N=83,500): This condition is similar to the control condition in field experiment 1.

Search suggestions are generated by the proprietary algorithm funnel. At the ranking stage, the

ranking algorithm scores candidate items from two sources: (1) those retrieved at the candidate

generation stage and (2) those supplied by the market leader’s API. The ranking algorithm scores

such candidate items and generates highest-scoring search suggestions in a ranked order.

Rank Adjustment (N=83,517): Identical to the control condition, at the ranking stage, the

ranking algorithm scores candidate items from two sources: (1) those retrieved at the candidate

generation stage and (2) those supplied by the market leader’s API. In contrast to the control

condition, the ranking algorithm lowered (boosted) the rank of the market leader’s candidate items

(the company’s own candidate items) and then generated the final search suggestions. As a re-

sult, relative to those in the control condition, users in this condition are less likely to see search

suggestions supplied by the market leader in the final list.

Removal of Access to the Market Leader’s API (N=83,264): This condition is similar

to the treatment condition in field experiment 1. The ranking algorithm (the same as the one

used in the control condition) scores only candidate items retrieved from the candidate generation

stage and generates highest-scoring search suggestions in a ranked order. As a result, users in this

condition never see search suggestions supplied by the market leader.

5.2 Results

Figure 11 shows that the removal of the market leader’s API leads to a decrease in CTR by 6.4%.

This estimate is between the aggregate estimate (i.e., –4.6%) and first-week estimate (i.e., –8.2%)

from the main experiment. In addition, the estimate of the main field experiment for week 10 is

about 4.9%. Hence, we are able to broadly replicate the main effect reported earlier.
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Figure 11: The Relative Impact of API Removal and Rank Adjustment

Notes: N= 250,281. Lift refers to the incremental CTR among treated users relative to control users
as a percentage of CTR among control users. Error bars represent 95% confidence intervals of lift
estimates, which are calculated using the Delta method. For details, see Tables D7.
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Turning to rank adjustment, we find that pushing down the ranking of search suggestions from

the market leader leads to a decrease in CTR by 3.6%. This estimate supports that manipulating

the rank directly has a significant impact on product quality. In practice, such an adjustment

broadly relates to Google’s adjustment in its ranking algorithms. Specifically, Google’s white paper

notes that “where our algorithms detect that a user’s query relates to a “Your Money or Your

Life (YMYL)” pages topic, we will give more weight in our ranking systems to factors like our

understanding of the authoritativeness, expertise, or trustworthiness of the pages we present in

response (Google, 2019).”

Taken together, these estimates provide suggestive evidence that in our context, manipulating

the rank of the market leader’s candidate items induces a smaller impact on CTR relative to

the removal of access to the market leader’s candidate items for the ranking algorithm. Another

takeaway is that these estimates shed light on the strength of the manipulation across different

conditions. Conceptually, the manipulation of pushing down the rank of search suggestions from

the market leader should be weaker than completely removing the market leader’s candidate items.

Therefore, the magnitude of the estimates (6.4% versus 3.6%) increases our confidence in the success

of the manipulation. Finally, given the intertemporal trade-off between short-term gain and longer-

term development, a practical takeaway of this experiment is that adjusting the rank of the market

leader’s candidate items could be a “balanced” strategy that could allow a company to benefit from

API access but also collect more individual-level data due to more clicks on internal candidates.

6 Discussion

We leverage a field experiment where we exogenously removed access to the market leader’s data

capability in the search-suggestion generating process. We find that, without access to the market

leader’s API, users click on search suggestions 4.6% less relative to those users in the condition with

such access Moreover, we find that a 10% increase (decrease) in CTR on search suggestions leads

to a 1.85% increase (decrease) in CTR on the top-slot link on SERP. The length of the large-scale

experiment enables us to document significant dynamics in how users interact with the product
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when there is no access to external data capabilities. In particular, we find that the negative effect

of removing API access is less negative over time. Our mechanism analyses suggest that such

dynamics are likely to be driven by the improvement in the company’s autocomplete predictions

through accumulating more internal data. Finally, using a second (short-term) experiment, we

manipulated (i) access to the market leader’s API and (ii) the rank of search-suggestion candidates

to ensure that it is indeed the market leader’s data capability that lead to the effects we measure.

Our paper has notable managerial implications, highlighting a nuanced story for companies

looking to leverage external data capabilities. The results suggest that leveraging external data

capabilities can provide an economically meaningful return for a company, especially in the early

stages of new product development. For search products, in particular, we show that access to

depersonalized search results can increase engagement not only on the focal product, but also

downstream on the SERP. This is important because several search products are launched period-

ically (e.g., Cliqz) that could look to this potential strategy. However, we also highlight a trade-off

between the short-run gains and longer-run product development: that is, reliance on external data

capabilities over the longer term can limit the focal firm’s organic development using internal data.

We believe our results also shed light on policy issues that are currently being debated. While

it might be consequential for a company in isolation, given the degree of concentration in search

markets in different countries (e.g., Google in the US and Baidu in China), access to the market

leader’s data capability may not be able to significantly alter the market structure by reducing the

barriers to entry sufficiently. Indeed, recent papers such as Allcott et al. (2024) demonstrate that

changing the default search engine can have a significantly larger effect than what we find in our

setting. That noted, sharing data capabilities across search engines could be part of a multi-pronged

approach adopted by regulators to tackle market concentration by using different levers.

Our study has limitations. Like other studies with field experiments, we can only look at one

setting. Hence, our estimates require assumptions to extrapolate to other contexts. Given that

our field experiment varies external candidate items at only one stage of the algorithmic funnel,

it would be prudent to replicate the general tenor of our findings in other contexts. This would,

of course, depend on whether the opportunity exists to leverage such data-sharing agreements.
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Our study is also a partial equilibrium analysis, and further research could consider more general

equilibrium dimensions. For example, there could be strategic responses from other (competing)

platforms in the face of such data partnerships. Analyzing how the platform ecosystem evolves

with such data focused partnerships or through regulations would be a fruitful next step. Finally,

monetization strategies in search are evolving with companies’ experimentation with thumbnails,

featured snippets, and embedded links. While users of search engines might be getting used to

these features, their responses could change as monetization occurs at different stages of the search

funnel. Follow-up research could account for this while studying these topics.
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Online Appendix

Appendix A Additional Tables and Figures

A.1 Tables

A.1.1 Comparison between Search and Recommendation

Table A1: Search Engine vs. Homepage Recommendations

Search Engine Homepage Recommendations

Basis Rank items based on degree of
match with explicit search query

Rank items based on implicitly
collected engagement data

Explicitness of
ranking signals

High Low

Use of personalization Low/Moderate High

A.1.2 Randomization Checks: Field Experiment 2

Table A2: Randomization Checks: Field Experiment 2

User Characteristics Control Algorithm Data p. value p. value

(C) (T1) (T2) Diff (T1,C) Diff (T2,C)

Male 0.5714 0.5671 0.5671 0.0729 0.0755

(0.0017) (0.0017) (0.0017)

Larger Cities 0.6327 0.6312 0.6334 0.5228 0.7714

(0.0017) (0.0017) (0.0017)

Smaller Cities 0.3292 0.3281 0.3269 0.6152 0.2983

(0.0016) (0.0016) (0.0016)

Active days in the past 30 days (search activities) 100 100.0533 99.8655 0.8609 0.6571

(0.2144) (0.2156) (0.2141)

Query views in the past 30 days (search activities) 100 100.4362 100.3986 0.5468 0.5775

(0.5058) (0.5179) (0.5061)

Notes: This table shows the balance along several observable dimensions between users in the treatment condition
and those in the control condition. Following the hierarchical classification of Chinese cities, larger cities include
tier 1 to 4 cities (e.g., tier 1: largest cities such as Beijing), whereas smaller cities refer to tier 5 cities and below. p
value is obtained based on a two-sided t-test on the equality of means with unequal variances. For confidentiality
purposes, numbers in the last two rows were normalized so that the variable means in the control condition are 100.
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A.1.3 Robustness Checks

Table A3: Robustness Checks

(1) (2) (3) (4) (5)

Lift of CTR Lift of CTR Click ln(Clicks) CTR

Probability

API Removal -0.0459*** -0.0539*** -0.0103*** -0.0329*** -0.0124***

(0.0014) (0.0013) (0.0009) (0.0018) (0.0010)

API Removal×Female -0.0016

(0.0010)

API Removal×Smaller Cities 0.0013

(0.0010)

API Removal×New User 0.0068***

(0.0024)

API Removal×Active Days -0.0085***

(0.0013)

API Removal×Query Views -0.0104***

(0.0013)

Control variables No Yes No No No

R2 0.0004 0.0126 0.0001 0.0001 0.0126

Observations 2,388,377 1,932,886 2,390,244 2,390,244 1,932,886

* p<0.1, ** p<0.05, *** p<0.01. Lift refers to the incremental CTR among treated users relative to control users
as a percentage of CTR among control users. We calculate heteroskedasticity-robust standard errors. Standard
errors of lift estimates in parentheses are calculated using the Delta method. In Column (1), CTR is computed
using the first day of each user in the sample. In Columns (2) to (5), CTR is computed across the entire experiment
(108 days). In Column (2), controls variables include gender, city size, and user activity (query views, active days).
Whereas we use a linear probability model in Column (3), we use the logarithm of (1+clicks) as the dependent
variable in Column (4). Column (5) includes all interaction terms of control variables with treatment status.
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A.2 Figures

A.2.1 Mechanics of the Market Leader’s API

Figure A1: How Does the Market Leader’s API Work?

A.2.2 Randomization Checks

Figure A2: Proportion of Users Assigned to the Treatment Condition Over Time
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Figure A3: Proportion of New Users Assigned to the Treatment Condition Over Time

Figure A4: Number of Unique Daily Active Users in Treatment vs. Control Over Time
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A.2.3 Ruling out Attrition

Figure A5: Longer-Term Effects of API Removal on Query Volume

Notes: Error bands represent 95% confidence intervals of lift estimates, which are calculated
using the Delta method.

A.2.4 Temporal Variation in CTR among Users in the Control Condition

Figure A6: Temporal Variation in CTR among Users in the Control Condition

Notes: For confidentiality purposes, we added an undisclosed constant to the weekly average
clickthrough rates (CTRs). Error bands represent 95% confidence intervals.
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Appendix B Treatment Effects by Query Category

In this section, we explore how treatment effects vary by popularity of the categories queries belong

to. When users enter a query term, the company’s natural language processing tool can classify

the content category of each term into 31 first-level categories (e.g., Health) and 167 second-level

categories (e.g., Health-Disease). Conceptually, we can define the query popularity based on the

number of searches for a specific content category (e.g., query in a popular or niche content cat-

egory). However, we did not observe the information about query type before the experiment

(unlike demographics, active days), so we cannot use pre-experimental query popularity as a poten-

tial source of heterogeneity. Using the post-treatment query popularity might cause a bad control

problem (Angrist and Pischke, 2009). Therefore, we constructed the popular-niche threshold and

split the sample based on clicks from users in the control condition on the first day of the experi-

ment. Further, we examine only the first search occasion of users to restrict our analysis to their

first exposure to the treatment. Our rationale is that, like any random sample of the user base

of the focal search product, users in the control condition represent the status quo. Therefore,

under the assumption of no spillovers across the two conditions, the variation in query popularity

in the control condition shall mirror the population of interest and not be affected by the treatment.

Further, focusing on the first day of the experiment alleviates the concern of violating SUTVA.

Specifically, we use the search records of users who clicked at least once and define the content

categories that generate 75% of the clicks in the control condition on the first day of the exper-

iment as popular (mainstream) content (e.g., Education-K-12, Books-Novel, Health-Disease) and

the remaining 25% as niche content (e.g., Music-Music Radio, Government Affairs-Nonprofit Or-

ganization). In Table B1, we verified that the user demographics and usage activities are balanced

among users in the treatment and control conditions in this subsample. Columns (1) and (2) of

Table B2 suggest that the negative treatment effect is driven by popular queries. A plausible ex-

planation is that the candidate items from the market leader’s API are generated based on real

searches by all users on the market leader’s platform but are not personalized. In contrast, clicking

niche content is not affected by API removal because recommending niche content relies more on

personal data. This demonstrates that external candidate items informed by the market leader’s

real searches may provide better suggestions for popular queries that require less personalization.
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Table B1: Randomization Checks

User Characteristics Control Treatment p. value

Male 0.5151 0.5135 0.1520

(0.0008) (0.0008)

Larger Cities 0.5386 0.5381 0.6793

(0.0008) (0.0008)

Smaller Cities 0.4560 0.4563 0.7868

(0.0008) (0.0008)

Mobile Operating System: Apple iOS 0.1161 0.1156 0.5405

(0.0005) (0.0005)

Mobile Operating System: Android 0.8831 0.8836 0.5393

(0.0005) (0.0005)

Active days in the past 30 days (search activities) 100 99.5790 0.2119

(0.2390) (0.2379)

Query views in the past 30 days (search activities) 100 99.8770 0.8406

(0.4303) (0.4346)

Notes. This table shows the balance between users in the treated relative to control groups along several
observable dimensions for those who have clicked on a search suggestion at least once on the first day
for each user. Following the hierarchical classification of Chinese cities, larger cities include tier 1 to 4
cities (e.g., tier 1: largest cities such as Beijing), whereas smaller cities refer to tier 5 cities and below.
p-value is obtained based on a two-sided t-test on the equality of means with unequal variances. For
confidentiality purposes, values reported in the last two rows were normalized so that the variable means
in the control condition are 100.

Table B2: Treatment Effects by Query Type

(1) (2)

Lift of CTR Lift of CTR

(Popular Categories) (Niche Categories)

API Removal -0.0134*** 0.0021

(0.0017) (0.0050)

Sample time period First Day First Day

R2 0.0001 0.0000

Observations 764,119 764,119

* p<0.1, ** p<0.05, *** p<0.01. We estimate a linear regression and calculate

heteroskedasticity-robust standard errors. Standard errors of lift estimates in

parentheses are calculated using the Delta method.
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Appendix C Back-of-the-Envelope Calculation

In this section, we carry out a back-of-the-envelope calculation to shed light on the economic

implications of access (or lack thereof) to the market leader’s candidate items over the course of the

experimental period. The monetary value of the CTR on search suggestions can be decomposed

into two components: (1) direct revenue gain from clicking on the search suggestions (i.e., tied to

the average treatment effect of 4.6%) and (2) indirect revenue gain from clicking on search results

through search suggestions (i.e., tied to the elasticity of 0.185). Next, we provide details of these

computations while explicitly discussing the assumptions we make in the process.

Regarding (1), an average user generates 6.45 search-suggestion clicks per month; on average,

the unit query revenue associated with a search-suggestion click is 0.012 Chinese yuan (CNY). Unit

query revenue is equal to the total search keyword auction revenue divided by the total number

of searches.1 The number of monthly active users of the search product are approximately 100

million toward the end of our experiment.2 For these 100 million users, a 4.6% decrease in search-

suggestion CTR results in a loss of 356,000 CNY per month (i.e., 6.45×0.012×0.046×100, 000, 000)

or $50,000 per month. Regarding (2), an average user generates 6.45 search-suggestion clicks per

month; according to an industry report from Dongxing Securities, each click generates revenue of

0.35 CNY for smaller search engines such as our partner company3; the elasticity of CTR on the

top-slot search result with respect to CTR on search suggestions is 0.185. Therefore, a 4.6% decrease

in search-suggestion CTR creates a loss of 1,925,000 CNY per month (i.e., 0.046 × 0.185 × 6.45 ×

0.35×100, 000, 000) or $275,000 per month through a decrease in CTR on SERP. The total revenue

loss due to API removal is approximately $3.9 million annually [12 × ($50,000 + $275,000)]. We

believe this is an economically significant number for a team that launched a new search product.

Notably, this calculation is very conservative. For example, based on industry estimates, unit

query revenue can grow tenfold at the very least as the search engine matures. In addition, 0.35 CNY

1For more details, see https://dataforseo.com/blog/google-autocomplete-api-for-keyword-research-tool and
https://www.dragonmetrics.com/guide-to-keyword-research-for-baidu-seo/

2This number aligns with global estimates of the small search players such as Ecosia (20 million as of 2022),
DuckDuckGo (100 million as of 2023) and Bing (500 million as of 2023). See https://techcrunch.com

/2022/06/09/ecosia-updates/; https://techreport.com/statistics/duckduckgo-statistics/ and
https://backlinko.com/bing-users.

3https://pdf.dfcfw.com/pdf/H3_AP201509210010852974_1.pdf.
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is an average estimate across all slots, thus significantly underestimating the value of top-slot clicks

since most monetization happens through top-slot clicks. Zhang and Feng (2011) show that top-

slot click generates $0.4 at Yahoo!. Based on publicly available information, we use a conservative

estimate that 20% of top-slot search results are ads,4 a 4.6% decrease in search-suggestion CTR

creates a loss of $5.3 million per year through a decrease in CTR on SERP (i.e., 0.046 × 0.185 ×

6.45 × 0.4 × 0.2 × 100,000,000 × 12). In this scenario, the total revenue loss due to API removal

can be $5.9 million (5.3 million + $50,000 × 12) rather than 3.9 million.

This exercise comes with a few caveats. First, our calculation rests on the assumption that only

clicks on top-slot search results generate revenue. While the literature suggests that the top slot

gets the maximum clicks and revenue, some of the revenue could be generated from lower slots. In

that scenario, we would have to account for the reduction in clicks on other slots on the SERP as a

result of the treatment. Even after accounting for the reduction in CTR of other slots (elasticity is

–0.089) and making the extreme assumption that all slots on the SERP generate the same revenue,

the total revenue would range from approximately $2 to $3 million annually (using the following as

the adjustment factor: [(0.185-0.089)/0.185]).

Second, we do not have proprietary information about the cost per query to the market leader’s

API, and industry estimates can vary significantly across contexts, scale, and time.5 Moreover,

under the regulations proposed, tapping into external APIs for data-related inputs will not be

priced through the market but from an external fund to aid smaller companies. Hence, when such

an external fund is set up, access to such an API can be done without cost, leading to the gains

quantified above. At the very least, from a regulatory perspective, there have been proposals for

smaller search companies to access data from gatekeeper search engines at fair, reasonable, and non-

discriminatory (FRAND) rates. We expect FRAND rates to be considerably lower than current

market rates since such APIs are a tool for growth and profits for platform companies (Benzell

et al., 2023). That noted, based on our revenue estimates of $3.9 million, we can estimate the cost

per query, making it worthwhile for the focal company to query the API each time through a market

mechanism. An average user performs 14.5 searches per month, and the external API is queried for

every search. Based on our lower bound revenue estimates, the break-even point is approximately

4https://www.justice.gov/d9/2023-10/416881.pdf
5See https://www.geekpark.net/news/334965 for some anecdotes.
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$0.00022. Using the data for top-rank click revenues, we find that the break-even point is 50%

higher at $0.00033. As mentioned before, the unit query revenue for search suggestions can grow

10-fold while it can at least double for SERP. This can make the break-even cost significantly higher

and make leveraging external data capabilities useful in the short run.

Overall, this exercise allows us to highlight the economic benefits and costs of external data

capabilities through the API, which has implications for the focal company, the search engine

industry, and policymakers.
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Appendix D Supplemental Information

Table D1: Average Treatment Effect and Heterogeneous Treatment Effects by User Characteristics

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Lift of CTR Lift of CTR Lift of CTR Lift of CTR Lift of CTR Lift of CTR Lift of CTR Lift of CTR Lift of CTR

Overall Female Male Larger Cities Smaller Cities Heavy Users Light Users Heavy Users Light Users

(Active Days) (Active Days) (Query Views) (Query Views)

API Removal -0.0459*** -0.0461*** -0.0472*** -0.0503*** -0.0408*** -0.0633*** -0.0352*** -0.0584*** -0.0323***

(0.0011) (0.0018) (0.0015) (0.0015) (0.0017) (0.0013) (0.0016) (0.0012) (0.0019)

Unit of analysis User User User User User User User User User

R2 0.0007 0.0008 0.0008 0.0010 0.0006 0.0029 0.0004 0.0023 0.0003

Observations 2,390,244 822,128 1,201,234 1,204,821 1,036,051 780,820 1,369,873 1,056,338 1,094,355

* p<0.1, ** p<0.05, *** p<0.01. CTR is computed as the ratio of the total number of clicks to total number of exposures over the entire experiment
(108 days). Lift refers to the incremental CTR among treated users relative to control users as a percentage of CTR among control users. We estimate
a linear regression as specified in Equation 1 and calculate heteroskedasticity-robust standard errors. Standard errors of lift estimates in parentheses are
calculated using the Delta method. Overall refers to the average treatment effect based on the full sample, while heterogeneity treatment effects are based
on subsamples by user characteristics (gender, city size, user activity). Following the hierarchical classification of Chinese cities, “larger” cities include
tier 1 to 4 cities (e.g., tier 1: largest cities such as Beijing), whereas “smaller” cities refer to tier 5 cities and below.
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Table D2: Elasticity of Search-Result CTR with respect to Search-Suggestion CTR

(1) (2)

A. IV Estimates ln(CTR SERP) ln(CTR SERP)

(Top Slot) (Other Slots)

ln(CTR SUG) 0.1854*** -0.0889***

(0.0578) (0.0333)

Unit of analysis User User

Observations 1,653,659 1,653,659

B. First-stage Estimates ln(CTR SUG) ln(CTR SUG)

API Removal -0.1067*** -0.1067***

(0.0047) (0.0047)

First stage F-statistic (instr.) 506.85 506.85

Unit of analysis User User

Observations 1,653,659 1,653,659

* p<0.1, ** p<0.05, *** p<0.01. Robust standard errors in parentheses. Instrumental-

variables (IV) estimates are obtained using two-stage least-squares (2SLS) regression. First-

stage equation: ln(CTR SUG)i = α1 + β1 × API Removali + ϵ1i. Second Stage equation:

ln(CTR SERP)i = α2 + β2 × ln(CTR SUG)i + ϵ2i.
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Table D3: Longer-Term Treatment Effects on Search-suggestion CTR (First 8 Weeks)

(1) (2) (3) (4) (5) (6) (7) (8)

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8

Lift in CTR Lift in CTR Lift in CTR Lift in CTR Lift in CTR Lift in CTR Lift in CTR Lift in CTR

A. All Users

API Removal -0.0818*** -0.0895*** -0.0851*** -0.0677*** -0.0612*** -0.0602*** -0.0655*** -0.0544***

(0.0022) (0.0022) (0.0021) (0.0021) (0.0021) (0.0021) (0.0021) (0.0021)

R2 0.0021 0.0027 0.0025 0.0016 0.0013 0.0013 0.0015 0.0011

Observations 620,628 632,598 631,729 648,681 646,238 648,812 646,005 646,153

B. New Users

API Removal -0.0647*** -0.0727*** -0.0713*** -0.0486*** -0.0368*** -0.0400*** -0.0371*** -0.0248***

(0.0026) (0.0046) (0.0054) (0.0057) (0.0063) (0.0065) (0.0069) (0.0070)

R2 0.0010 0.0011 0.0010 0.0004 0.0002 0.0003 0.0002 0.0001

Observations 621,837 238,988 179,006 160,526 138,896 128,614 118,327 113,202

C. Returning Users

API Removal -0.0994*** -0.0961*** -0.0885*** -0.0715*** -0.0654*** -0.0639*** -0.0698*** -0.0586***

(0.0027) (0.0023) (0.0022) (0.0022) (0.0022) (0.0021) (0.0021) (0.0021)

R2 0.0041 0.0040 0.0033 0.0021 0.0017 0.0017 0.0019 0.0014

Observations 333,548 449,599 486,199 517,304 531,150 542,394 547,967 552,399

* p<0.1, ** p<0.05, *** p<0.01. Lift refers to the incremental CTR among treated users relative to control users as a percentage of

CTR among control users. The regression for a given week is cross sectional as specified in Equation 1 where the CTR is computed as

the ratio of the total number of clicks to total number of exposures until the end of that week. We calculate heteroskedasticity-robust

standard errors. Standard errors of lift estimates in parentheses are calculated using the Delta method. New users are defined on a

weekly basis: new users at week t are those who have never used the search bar since the start of the experiment and used the search

bar for the first time at week t (returning users, otherwise).
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Table D4: Longer-Term Treatment Effects on Search-suggestion CTR (Last 8 Weeks)

(1) (2) (3) (4) (5) (6) (7) (8)

Week 9 Week 10 Week 11 Week 12 Week 13 Week 14 Week 15 Week 16

Lift in CTR Lift in CTR Lift in CTR Lift in CTR Lift in CTR Lift in CTR Lift in CTR Lift in CTR

A. All Users

API Removal -0.0587*** -0.0488*** -0.0390*** -0.0364*** -0.0406*** -0.0428*** -0.0368*** -0.0447***

(0.0021) (0.0020) (0.0020) (0.0020) (0.0020) (0.0020) (0.0020) (0.0025)

R2 0.0013 0.0009 0.0006 0.0005 0.0006 0.0007 0.0005 0.0008

Observations 636,990 637,452 644,985 645,390 645,208 643,873 643,051 394,381

B. New Users

API Removal -0.0201*** -0.0324*** -0.0178** -0.0117 -0.0153* -0.0237*** -0.0139* 0.0027

(0.0073) (0.0074) (0.0073) (0.0074) (0.0075) (0.0076) (0.0077) (0.0122)

R2 0.0001 0.0002 0.0001 0.0000 0.0000 0.0001 0.0000 0.0000

Observations 103,421 97,533 95,969 94,546 91,395 87,914 85,624 32,579

C. Returning Users

API Removal -0.0630*** -0.0508*** -0.0415*** -0.0391*** -0.0436*** -0.0451*** -0.0392*** -0.0479***

(0.0021) (0.0021) (0.0020) (0.0020) (0.0020) (0.0020) (0.0020) (0.0026)

R2 0.0016 0.0011 0.0007 0.0006 0.0008 0.0009 0.0007 0.0010

Observations 551,893 557,002 565,718 567,284 570,147 571,960 572,820 365,845

* p<0.1, ** p<0.05, *** p<0.01. Lift refers to the incremental CTR among treated users relative to control users as a percentage of

CTR among control users. The regression for a given week is cross sectional as specified in Equation 1 where the CTR is computed as

the ratio of the total number of clicks to total number of exposures until the end of that week. We calculate heteroskedasticity-robust

standard errors. Standard errors of lift estimates in parentheses are calculated using the Delta method. New users are defined on a

weekly basis: new users at week t are those who have never used the search bar since the start of the experiment and used the search

bar for the first time at week t (returning users, otherwise).
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Table D5: Longer-Term Treatment Effects on Query Volume (First 8 Weeks)

(1) (2) (3) (4) (5) (6) (7) (8)

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8

Lift in QV Lift in QV Lift in QV Lift in QV Lift in QV Lift in QV Lift in QV Lift in QV

A. All Users

API Removal -0.0055 -0.0041 -0.0039 0.0009 -0.0019 -0.0057 -0.0040 0.0016

(0.0047) (0.0047) (0.0048) (0.0048) (0.0046) (0.0048) (0.0047) (0.0046)

R2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Observations 622,910 635,060 634,320 651,470 649,045 651,730 648,917 649,132

B. New Users

API Removal -0.0030 -0.0044 -0.0035 0.0023 0.0013 -0.0101 -0.0046 0.0006

(0.0033) (0.0047) (0.0057) (0.0064) (0.0071) (0.0079) (0.0077) (0.0072)

R2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Observations 621,837 238,988 179,006 160,526 138,896 128,614 118,327 113,202

C. Returning Users

API Removal -0.0062 -0.0051 -0.0060 -0.0012 -0.0020 -0.0065 -0.0053 0.0025

(0.0055) (0.0049) (0.0048) (0.0048) (0.0047) (0.0048) (0.0047) (0.0046)

R2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Observations 333,548 449,599 486,199 517,304 531,150 542,394 547,967 552,399

* p<0.1, ** p<0.05, *** p<0.01. Lift refers to the incremental number of queries entered by treated users relative to control users as a

percentage of number of queries entered by control users. The regression for a given week is cross sectional as specified in Equation 1

where query volume (QV) is computed as total number of queries entered until the end of that week. We calculate heteroskedasticity-

robust standard errors. Standard errors of lift estimates in parentheses are calculated using the Delta method. New users are defined

on a weekly basis: new users at week t are those who have never used the search bar since the start of the experiment and used the

search bar for the first time at week t (returning users, otherwise).
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Table D6: Longer-Term Treatment Effects on Query Volume (Last 8 Weeks)

(1) (2) (3) (4) (5) (6) (7) (8)

Week 9 Week 10 Week 11 Week 12 Week 13 Week 14 Week 15 Week 16

Lift in QV Lift in QV Lift in QV Lift in QV Lift in QV Lift in QV Lift in QV Lift in QV

A. All Users

API Removal -0.0025 -0.0041 -0.0022 -0.0022 0.0023 0.0022 -0.0025 -0.0039

(0.0047) (0.0046) (0.0048) (0.0046) (0.0051) (0.0046) (0.0045) (0.0051)

R2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Observations 640,200 640,881 648,685 649,281 649,151 647,882 647,084 396,746

B. New Users

API Removal -0.0022 0.0042 -0.0086 0.0058 0.0059 0.0192** 0.0053 0.0083

(0.0077) (0.0077) (0.0078) (0.0073) (0.0079) (0.0088) (0.0094) (0.0134)

R2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Observations 103,421 97,533 95,969 94,546 91,395 87,914 85,624 32,579

C. Returning Users

API Removal -0.0026 -0.0058 -0.0013 -0.0033 -0.0002 0.0009 -0.0017 -0.0071

(0.0048) (0.0046) (0.0047) (0.0046) (0.0052) (0.0046) (0.0045) (0.0051)

R2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Observations 551,893 557,002 565,718 567,284 570,147 571,960 572,820 365,845

* p<0.1, ** p<0.05, *** p<0.01. Lift refers to the incremental number of queries entered by treated users relative to control users as a

percentage of number of queries entered by control users. The regression for a given week is cross sectional as specified in Equation 1

where query volume (QV) is computed as total number of queries entered until the end of that week. We calculate heteroskedasticity-

robust standard errors. Standard errors of lift estimates in parentheses are calculated using the Delta method. New users are defined

on a weekly basis: new users at week t are those who have never used the search bar since the start of the experiment and used the

search bar for the first time at week t (returning users, otherwise).
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Table D7: The Relative Impact of API Removal and Rank Adjustment on Search-suggestion CTR

Lift of CTR

API Removal -0.0638***

(0.0040)

Rank Adjustment -0.0361***

(0.0040)

R2 0.0010

Unit of analysis User

Observations 250,281

* p<0.1, ** p<0.05, *** p<0.01. Lift refers to the incremental CTR among treated

users relative to control users as a percentage of CTR among control users. CTR is

computed as the ratio of the total number of clicks to total number of exposures over

the duration of this experiment (1 day). The regression is specified as: Yi = α3+β3×

API Removali +γ3 ×Rank Adjustment+ ϵ3i. We calculate heteroskedasticity-robust

standard errors. Standard errors of lift estimates in parentheses are calculated using

the Delta method. The estimate of the intercept is omitted due to confidentiality.
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